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CONNES® ANALOGUE FOR CROSSED PRODUCTS
OF THE THOM ISOMORPHISM
Marc A. Rieffel*

The purpose of this note is to give a variant of the proof of Connes'
analogue for crossed products of the Thom isomorphim [1]. Thisvariant
has the advantage of taking place in a somewhat more traditional setting,"
in that the isomorphisms arise as the usual connecting homomorphisms for
the K-theory exact seqdence of a certain short exact sequence. This short
exact sequence is itself Just an analogue of the Toeplitz extension of
Pimsner and Voiculescu [4] in which the group of integers is replaced by
the group of real numbers, and which it thus seems appropriate to cal] the
Wiener-Hopf extension. On the otﬁer hand, we have nothing new to contribute
to the'proof of the key lemma for Connes' theorém, which associates to pro-
Jections certain cocycles, and so we will simply quote this result where
needed. |

We recall that if (A, IR, a) is a C*-dynamical system [3] with the
real line acting, and with crossed product algebra Ax;IR_, then .Connes' -

theorem asserts that there are natural isomorphisms

Ky(Ax_IR) = K (h), Ky(Ax R) = K (A)

We begin by describing the Wiener-Hopf extension for A<, IR. Let ’
RU{+»} denote IR with a point adjoined at +~ (but not at -=). Let =
C (for "cone") denote the C*-algébra Cw(IRLH+¥}) of continuous functions

on IRU{+} which vanish at -», and letS (for “suspension") denote the
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ideal of C consisting of functions which also vanish at +~. Then we have

the evident sﬁqrt exact sequence
0+S+C~-¢€~+0,

where ( -denote§ the complex numbers. Let = deﬁote the action of IR on
C which comes from translation on RU[+w}, leaving the point +e fixed.
Note that S is carried into itself by t, so that if we consider IR to
have the trivial action on € then the above exact sequence is equivariant
for fhe-actidns on the three algebras.

Now let CA  denote thevtensor product of C and A, realized as the
C*-algebra of A-valued functions on IRU(+»} which vanish at -, so that
CA is one of the usua] descriptions of the cone over A. We define SA
similarly, so that it is one of the usual descriptions of the suspension of

A. Then we have the evident short exact sequence
0+SA~CA>A>0.

If we'still view CA .as a tensor product, it is clear that we have the
inner tensor product action t®a of IR. Specifiéal]y, if f is an

A-valued function on IRU{+=}, then
(1) F)(t) = a (f(t - 1))

for r, t € IR. It is clear that SA is a wo-invariant ideal of CA
and ‘that the quotient action on A is just a. It is easily seen (lemma 1
of [1]) that the corresponding sequence of crossed product algebras is exact.

That is, we obtain the short exact sequence

0~ SAvaaIR + CAx_, IR ~» AxaIR + 0.

0

We call this the Wiener-Hopf extension for AxaIR, since the corresponding
sequeﬁce in which IR 1is replaced by the integers is essentially the
Toeplitz extension of Pimsner and Voiculescu [4]. Strictiy speaking, we

should compress these sequences by the characteristic function of [0, +w],
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but we find itmore convenient not to do this.
If we apply the Bott periodicity theorem to the Wiener-Hopf extension we

obtain

K](SAxTeuIR) »‘K](CAxﬂaaIR) -+ K](AxaIR)

exp 4 + index

KO(AxaIR) “ KO(CAmeR) “« KO(SAmeR) .

Now it is known that

SAX guIR = SAX o IR 2 AB(Sx IR) = AGK(LZ(IR))

where 1 denotes the trivial action of IR on A, and where K(LZ(IR)) de-
notes the algebra of compact operators on LZ(IR). (The first isomorphism is
slightly buried in 7.7.12 and 7.9.2 of [3], but we describe it below.) It

follows that K*(SAteuIR) = Ki(A). Suppose we already have Connes' theorem

available. Then
K*(CAxTeuIR) Z Ke(CA) = 0

since CA is contractible. - It follows that, whatever the isomorphisms in
Connes' theorem may be, the index and exponential maps for the Wiener-Hopf
extension will themselves give isomorphisms. This'encourages us to try to
prove Connes' theorem by showing 'dir_ectly that K*(CAxTQdIR) = 0. The path
we take in doing this is indicated by: |

LEMMA 1. Suppose that it is known that for all A and o the index
map for the Wiener-Hopf extension is surjective. Then it follows that for
all A and o we have K*(CAX_@“IR) = 0.

Proof. If the index map is always surjective, then whenever K](AXOJR)=O

it follows that Ko(A) = 0. Let & denote the dual action of IR on Ax IR
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so that by Takai duality (theorem 7.9.3 of [3]) (AxaIR)XaIR = AXK(LZ(IR)).

Then it follows that if K](A) = 0, so that K]((AdeR)xaIR) =0, then

KO(AxaIR) = 0. If we apply this with (A, o) replaced by (CA, ©®d, we

" find that KO(CAxTGuIR) = (. Since taking suspensions (with trivial action)

commutes with taking crossed products, we can apply this with A reglaced

by SA to conclude by Bott periodicity that K,(CAx g TR) =0 also. Q.E.D.
Thus the crux of our argument is to show that the index map is always

sqrjective. We show this first for the case in which A has an identity

element, since we will show later by traditional arguments that the non-

unital case follows from this. So assume now that A has an identity element.

We will display for any projection p in any matrix algebra Mn(A), an

isomgtry V in Mn(CAxvaaIRf’ whose image in Mn(AxaIR)~ is a unitary

whose index represents the same element of KO(A) as does (the negative of) p.

To do this we must examine carefully the isomorphisms in
= 2 ~
KO(A) = KO(AQK(L (R))) = KO(SAX'[&X,IR) .

Now the first isomorphism. comes from picking any projection, E, of rank

one in K(LZ(IR)) “and then using the homomorphism a+ a®E from Mn(A) into
Mn(AXSK = Mn(AGDK). We choose E 1in a very specific way, namely, we let E
be the rank one projection on the unit vector f in LZ(IR) defined by

f(t) = e'tlzx(t), where here and in the sequel X denotes the characteristic
function of the interval [0, ). We recall that f is the first Laguerre
function in L2(0, w), We will always let kernel functions F(r,vt) act on

elements g of LZ(IR) ' -he formula

(Fg)(t) = [IRF(r, t)e(t - r)dr ,

so that composition of operators corresponds to the usual product in SxTIR.
With this convention it is easily seen that phe kernel function E(r, t) for

E 1is given by
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E(ry t) = e % (t)x(t - v) .

Now the isomorphism of SAxuguIR with SAxuanR is given by sending

GEL!(R, SA) to & where & is defined by

&(r, t) = a_ G (r, t)).

This is seen by a one line computation once it is recalled that the product '

in SAxTGaIR is defined by

(6*H) (r, t) = Ié(s, t)as(H(r -5, tl- s))ds

and similarly in SAxngnIR' Thu; peE as an element of Mn(SAXTguIR) js

given by the kernel P defined by

P(P, t) = Ott(P)E(.Y‘, t) .

We wish to construct an isometry in Mn(CAxTeuIR)ﬁ' whose image in Mn(A%aIR)~
is a unitary whose index is essentially (the negative of) the above P, where
denotes adjunction of an identity element.

To define the isometry we need Connes’cocycle for p. - We have no improve-
ment to offer for his proof [1] of the existence of this cocycle, but we have
one remark to make. On the face of it Connes only shows that €~ projections
havg a cocycle. This suffices since any projection can be approximated by
c” projections. But if q isa ¢~ projection very close to p, then
there is a unitary which conjugates q to p. A simple calculation then
sﬁows that this unitary can be used to adjust the cocycle for q to give a
cocycle for p. Thus every projection, C€° or not, has a cocycle, and for
this reason we do not need to assume in the sequel that p isa .C projec-
tion.

To fix our notation, we let ti> ut be the cocycle for p, so that it

is a norm-continuous family of unitaries in Mn(A) such that
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(1_) at(p) = ut*Put for all tE€ R,
(2) Ug 4 ¢ = usas(ut) for all s, t € R.

We remark that §ince th at(p) is a continuous family of projections,

elementary arguments show thét a continuous family of unitaries can be found
satisfying (1). Thus it is the fact that this family can be adjusted so as
to satisfy the cocycle identity (2) which is the deep part of Connes' lemma.

For ease of notation we will from now on denote Mn(A) by B, but we

CB

n

will still denote the action of IR on B by a. We note that Mn(CA)

‘naturally, and even more, that

TmIR) = CmeIR

Mn(CAx
natirally, while analogous identifications hold for the suspénsion functor S.
Our choice of the isometry V (and of the projection E earlier) is
motivated by the proof of lemma 6 of [2], in which an isometry in (CxTIRf
is exp]i;it]y constructed whose corange projection is exactly the prdjection
on the first Laguerre function. The relevance of this to the present situa-
tion comes from:

LEMMA 2. For any F € Ll(IR, C, t) define Fp € L](Hl,'CB, ™®n) by
Fp(r, t) = purF(r, t).

Then the mapping F& F_ is an (isometric) *-homomorphism, and so extends to

p
a *-homomorphism of CxTIR into CBXTGuIR’ which carries SxTIR into

SBx _[mIR .

Proof. For F, G € L](IR, C, 1) we have

]

(Fp*Gp)(r, t) pr(s, t)as(Gp(r - s, t - s))ds

'
= pusF(s, t)as(pur _ sG(r -5, t-5))ds

: .
= qususfpusas(ur _gJF(s, t)G(r -s, t - s)ds.
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_ S) = us*ur by the cocycle identity, so that

(F*6,) (r, ) = pu (F*G)(r, t)
as desired. Also

(Fp)*(r, t) = ar(Fp(-r, t - r)*)

. . * *
(o (pu_ ))*F(r, t)=(ur*purar(u_r)) F(r, t).
But urar(u_r) =1 by the'cocycle identity, so that

(F)*(r, t) = pu F*(r, t)

as desired. That the correspondence carries SXTIR into SBxTQuIR is clear.
Q.E.D.
We now define F specifically by

-Y‘/Z-

F(r, t) = e "X(r)x(t - r).

This is the 'VL(k)ML(f) of lemma 6 of [2]. As explained there, if I denotes

the identity operator adjoined to CxTIR (or later to CAXTGnIR)’ - then

I - F acts under the natural representation on LZ(IR) as the identity oper-

ator on LZ(-m, 0) and as the unilateral shift on L2(0, ®) with respect

to the Laguerre functions. In particular one calculates easily that

(#)  F+F* - F*F = 0, F+ F* - F*F* = E,

Lemma 6 of [2] also contains the simple estimates which show that
Fe CxTIR even though F is not continuous ‘in the t variable. These

amount to the following. Let ¢ € L](IR) ‘and for any €> 0 Jlet

m._(s) = sup{lig(s - r)i: 0 < r < €}.
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Let T be the operator with kernel

T(r, t) = gr)x(t - r).

For any € >0 let x be the continuous function which agrees with x off
the interval [0, €] and is linear on this interval, and let TE be the
operator defined by replacing X by Xe in'the'expréssion for T. It is

clear that T€ € L](IR, C, t). Then one calculates that
2 2
IT - Teﬂ f_efme(s) ds.

Now it is clear that m_ does not fncfease as e decreases. Thus if
Jme(s)zds is finite for some ¢, then Te approaches T as € approaches
zero. In particular, it is clear that all of this holds for g{r) = f(r) =
e'r/zx(r), 'so that F € Cx IR.
With F defined specifically as above, we now let V =1 - Fp. It
follows from the above discussion that Fp is in CBnguIR even though it
'is not continuous in the t variable. The equations (#) above together
with Lemma 2 make it clear that V 1is an isometry in (CBXT&LIR)~ whose
corange projection is Ep. Note that Ep is in SereuIR since E€ SxTIR.
We must show that Ep defines the same element of KO(A) as does P.
We do this by showing that these two projections are, in fact, homotopic ih

SereuIR' This is most easily done by passing to SBxﬂgllR under the

isomorphism ~ defined earlier. Under this isomorphism Ep becomes
£ = = *
Ep(r, t) = a_y(puJE(r, t) = u_;*pu_,o_ (u JE(r, t).

- * . .
But a_t(ur) u_tul by the cocycle identity, so that

~ - * _ *A
Ep(r, t) = u_yFpu, _ (E(r, t) = u_*P(r, thu _ ..

Now for any A € [0, 1] 1let UA denote the unitary double centralizer on SB

consisting of pointwise multiplication by the function tr u._,t. Notice next
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that any double centralizer of SB can be viewed as a double centralizer
of SanallR (by considering it to be the “"delta function" with that value

at the point 0 of IR). If we so view UA’ then a simple calculation shows

that

~

= Y.*P
P U] PU

1°
Thus UA*ﬁUA for X €[0, 1] will provide the desired homotopy of Ep with

5 once we show that this family of projections is continuous (since Uy = 1).

Now by the uniform continuity of tw u. on compact subsets of. IR it is

‘ easily seen that for any f € SB the maps A »-UAf and Aw fUA are norm

contindous. The desired continuity then follows from the following Temma by
an /2 arguement.

LEMMA 3. Let (D, G, @) be a C*-dynamical system, and let ) - w, be
a map of [0, 1] into unitary double centralizers of D which is strict]y
continuous in the sense that for every d €D the maps Ak wxd and
A b-de are norm continuous. View the w, as double centralizers of DQaG.
Then for every F € DxaG the maps A|+-wAF and Av+~FwA are norm continuous.

Proof. Since the W, are uniformly bounded, it suffices to Verify
coqtinuity on a dense subset of DgaG. For the left«hand continuity, take as
such a dense subset the linear span of elements of form t > d¢(t) :where
d€D and ¢ € L](G). Then for any such element

, ﬂ(wA - wu)(d¢)u S."(WA - wu)dﬂﬂ¢HL](é),

so that the continuity in this case is obvious. The right-hand continuity
follows by taking adjoints. Q.E.D.

This concludes the proof of the fact that the index map for the Wiener-
Hopf extension is surjective in the case that A has an identity element. We
now use standard arguments to deduce from this the corresponding fact for the

case in which A does not have an.identity element. To do this we need the



|
L
i
:
]
!
i

152 | Marc A. Rieffel

~ following fact which is surely well-known, and which follows essentially

‘ immediately from the definition of the index map:

PROPOSITION 1. Let C and D be arbitrary C*-algebras, let I and

J be ideals in C and D respectively, and let ¢ be a homomorphism from

C to D which carries I into J, so that it induces a homomorphism from

C/I to D/J. That is, we have a commutative diagram

0+1-+C~>C/I+0-
TSR S
0+J>D=+D/J~+0

with exact rows. Then the diagram

K (c/r) Index, g (1)
+ Ky (e) ¥ Ky(9)

K, (073) index , Ko(9)

is commutative. '
Suppose>now that the a]gebfa A of our C*-dynamical system (A, IR, o),

does not have an identity element, and let A denote the algebra with identity
element adjoined. We let o denote also the action of IR extended to A.
It is then easily seen (e.g. lemmas 1 and 2 of [1]) that we obtain the follow-

ing commutative diagram with exact rows and columns:

0 0 ' 0
¥ 4 R %
0 - SA:mIR * CAx g R > Ax IR +0
¥ ) +
0+ SAx o IR ci\xmm > dem > 0
4 + +
0+SCxR - CExR - C*(IR) > 0.
¥ + ¥+

0 0 0
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- Applying the above proposition twice, and also the K-theory exact sequence,
to this diagram, we obtain the following commutative diagram with exact

columns:

K](SCxTIR)
¥
inde
K, (AxaIR) Ineex KO(SAXTMIR)

¥ ¥
~ index - ~

Ky (R 1R) AN9EX g (SEx  IR)
¥ ¥

K, (C*IR) Index, Ko(STx TR)

Now the second and third rows are index maps for Wiener-Hopf extensions

invoiving algebras with identity elements, and we have shown above that
these must be surjective. Furthermore, the two groups of the-third row
are both well known‘to be isomorphic to the group of integers (sihce
SExTIR is isomorphic to the compact operators), and so the surjection df the
third row must in fact be an isomorphism. Also K](SGXTIR) =0, so the middle
map of the right-hand column is injective. Simple diagram chasing then shows ,
i that the top index map must also be surjective, as desired. This concludes
E our proof of Connes' theorem.

We make two concluding remarks. The first is that itis, of course, njce
to give an axiomatic characterization of the isomorphisms, as Connes does.
In the present setting the proposition given above yields almost immediately
the naturality of the index isomorphism, which is part of Connes' character-
ization. The second remark is that from the proof given above that the index
is surjective, one obtains, in fact, an explicit form for the inverse isomor-
phism to the index. Specifically, if A has an identity element and if p‘
is a projection in some Mn(A), then the corresponding element of K](AxaIR)
must be represented by the image in (Mn(A)xaIR)~ of the isometry V defined
earlier. But this image is easily computed just by evaluating at t = +w

the kernel Ep. One finds in this way‘that the corresponding unitary in
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Mn(AxaIRf is

~-r/2

I - pue x(r).

This is related to the b of proposition 6 of [1]. Notice that the Fourier

transtorm of
e-r/z

1I- x(r)

is, up to a reparametrization, {t - i)/(t + i).
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