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APPLICATIONS OF STRONG MORITA EQUIVALENCE
TO TRANSFORMATION GROUP C*-ALGEBRAS

Marc A. Rieffel 1

.

- We will describe here ten related situations in which the
concept of strong Morita equivalence illuminates the relationship
between various transformation group C*-algebras. One feature
which we will notice is that situations which may be very
difficult to understand up to isomorphism may nevertheless become
tractable if one is content to understand them only up to strong

Morita equivalence.

There is some evidence, especially in the work of P. Green
[4,5], that a considerable part of the material discussed below
carries over to crossed products in@olving C*-algebras which need
not be commutative, but the exact extent to which this is true is
not clear at present. Important parts of the material discussed
below are themselves due to P. Green, as will soon be apparent.

For the definition and general properties of strong Morita
equivalence we refer the reader to [16] found elsewhere
in these proceedings, or to [10,11,12,13]. If G is a locally
compact group which acts as a transformation group on a locally
compact space M, then G acts as a group of automorphisms of
the commutative C*-algebra, C_(M), of contiruous complex-
valued functions which vanish at infinity. One can thus form
the corresponding crossed product C*-algebra, as-discussed
earlier in these proceedings. In thg present context this
crossed product algebra is called the transformation group
C*-algebra for the action of G on M, and is denoted by
c*(G, M). The representations of C*(G, M) correspond to the
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covariant representations of G and C_(M), as discussed
elsewhere in these proceedings, and C*(G, M) is the completion,
with respect to the norm obtained from these representations,of the
algebra Cc(G, M) consisting of the continuous functions of
compact support on GxM in which the product and involution are
defined by

(8%¥) (x, m) = IG¢(y, m¥(y tx, vy imady,
1

for ¢, ¥ ¢ Cc(G, M), X e G, m ¢ M. Most computations in this
subject are first carried out for Cc(G, M), and then extended to
C*(G, M) by density. Below we will only indicate what happens
for Cc(G, M).

o*(x, m) = (o(x~ Y, x"Im)) a(x"

SITUATION 1. Let M =G and let G act on M by left
translation. Then it is well-known that C*(G, G) is isombrphic
. to the algebra of compact operators on LZ(G). This is
essentially the theorem on the uniqueness of the Heisenberg
commutation relations [9]. . Thus we do not need the concept of
Morita equivalenée'to understand this situation (though it is
related to the next situation by the fact that the algebra of
compact operators is strongly Morita equiﬁalent to the algebra of
complex numbers). But this situation is a good place to start,
as it helps to suggest what might happen in the next situation.

SITUATION 2. We generalize the above situation by allowing
now many closed orbits, but we still require that the action of .
G be free, that is, we require that if xm = m for some . m ¢ M
and X ¢ G, then x = eG. We, in fact, need to assume a bit more
than that the orbits be closed, namely, we need to assume that
compact sets are wandering, in the sense that for any compact
subset K, of M, {x ¢ G:(xK)nK # ¢} should be precompact in G.
Since thé orbits will look like G, we expect that C*(G, M) = A
will look like a field of algebras of compact operators glued
together in some way (a homogeneous C*-algebra). But this
glueing process can be complicated, so it seems hopeless to find
any géneral statement describing precisely the isomorphism class
of C*(G, M). However one can find a nice statement concerning
the Morita equivalence class, namely that C*(G, M) is always
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Morita equivalent to C_(M/G), where M/G is the orbit space
with guotient topology, which will be locally compact Hausdorff
by the wandering condition. This result, and more, is basically
contained in [3]. For the eguivalence bimodule one takes

X = CC(M), with elements of B = Cw(M/G) viewed as functions

on M acting by pointwise multiplication on X. The B-valued

inner product is given by
<f, g>g(m) = ch(x-lm)g(x-lm)dx.
The left translation action of G on X by
(o, (EDy) = A0x) 3 (x"1y)
is "unitary"for the B-valued inner product, and together with
the action of C_(M) on X by pointwise multiplication, gives a
"covariant representat;on" of (G, C_(M)) whose integrated form

is an action of A on X. Now one property of an A-B-equivalence

bimodule is that
<f, g>Ah = f«<g, h>B for £, g, h ¢ X.
This property determines < , >a in terms of < , >p*

Using this fact in the present sitﬁation, we find by a simple
calculation that

<£, gy (x, m) = Ax) %2 m) 5 (x " m) .

We give a specific example. Let G be the two-element

. group, acting on the sphere, M, by the antipodal map, so that
M/G is real projective space. Then C*(G, M) corresponds to a
field of 2x2 matrix algebras, Mz, over M/G. But simple
computations show that C*(G, M) is not isomorphic to
C(M/G)QMZ, so that the description of the isomorphism class of
C*(G, M) is a bit complicated.

SITUATION 3. In topological dynamics, if one has a
homeomorphism, h, of a space P, and so an action of the
integers, Z, on P, then a standard construction is to form
the corresponding "flow under a constant function". For this
one lets M = (Px[0,1])/~, whefe ~ is the equivalence relation
on top and bottom given by (p,1) ~ (h(p), O). One then lets R
act on M by letting a point move up the vertical fibre until it
reaches height 1, so that the point is of form (p, 1), at which
time one skips to (h(p), O) and continues rising along that fibre.
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In this situation C*(R, M) is strongly Morita equivalent to
C*(z, P). This fact, as well as the above construction, is a

special case of:

SITUATION 4. Let H be a closed subgroup of G, and let
H act on the space P. Let M = GXHP = (GxP)/~, where ~ is
the equivalence relation (xs, p) ~ (x, sp) for xe¢ G, s ¢ H,
P ¢ P. Let the action of G on M be that which comes from
the action of G on G by left translation. Then C*(G, M)
is strongly Morita equivalent to C*(H, P). This will be seen
to be a special case of situation 7 below. - '

We give a specific example. Let P be the unit circle,
and let 2 act on P by powers of some fixed irrational rotation
(a free action, but with non-closed orbits, so not wandering).
Then C*(Z, P) is known to be a simple antiliminal algebra with
identity. If we view Z as a subgroup of R, then it is
easily séen that M==R*ZP is the torus, and the action of R is
just a flow at an irrational angle. Then C*(R, M), which is
a simple antiliminal algebra without unit, is Morita equivalent
to C*(zZ, P). This was pointed out to me by Phil Green.

SITUATION: 5. We now turn to situations in which the action
is explicitly not free. The simplest such occurs when M = G/H
for some closed subgroup H, with G acting by left translation.
The covariant representations are essentially the "transitive
systems of imprimitivity"” occuring in induced representations,
and Mackey's_imprimitivity theorem éssentially is the fact that
C*(G, G/H) is strongly Morita equivalent to C*(H). All this is
discussed in [10]. The equivalence bimodule is Cc(G). If
G and H -are unimodular then Cc(H) acts on the right by
convolutign, and Cc(G G/H) acts on the left as the "integrated
form" of the evident "covariant representation" of G and
C,(G/H) on Cc(G). The inner products are defined by

<€, go,ly, %) = IHf(xt)g*(t‘lx‘ly)dt
<f, g>B(t) = (£*.9) ().

In the non-unimodular case all this must be decorated with

modular functions.
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. SITUATION 6. Let G act on a space P, let H be a
closed subgroup of G, so that also H acts on P, and let
G act on M = (G/H)XP by the diagonal action. Then
C* (G, (G/H)*P) is strongly Morita equivalent to C*(H, P). (For
G =R, H=2, P = circle with R giving a flow at an irrational
rate, one obtains the specific example in 4 above.) Clearly 5
above is a special case of this situation, which in turn is a special case of:

SITUATION 7. Let G act on M, 1let E be a closed
subgroup, and sﬁppose that there is a G-equivariantmap, » , of
M onto G/H. Let P = n-l(é), so that H acts on P. Then
C*(G, M) is strongly Morita eguivalent to C*(H, P). This is
just a special case of theorem 17 of [4], where the setting
involves actions of groups on not necessarily commutative
C*-algebras. (Some corresponding isomorphism theorems are
contained in [5].) It is easily seen that if in 4 above one
defines m by 7(x, p)) = %X, then 4 is a special case of the
present situation, which in turn will be seen to be a special
case of situation 10 below.

SITUATION 8. As in situation 3 above, let h be a
homeomorphism of P, so that Z acts on P. Let F be any
strictly positive continuous function on P. Then one can
‘construct the “flow under the function ¥, in which M is the
quotient of {(p, r) € PxR:0srsF(p)} by the equivalence relation
(p, F(p))~(h(p), O) and R acts on M as in 3. Again
C*(R, M) is strongly Morita equivalent to C*(Z, P). This is a
special case of situation 10 below.

SITUATION 9. Let HE and K be two closed subgroups of
G, so that we can let K act on G/H by left translation, and
H act on K\G by right translation. Then C*(K, G/H) and
C*(H, K\G) are strongly Morita eguivalent. This is the
content of (12 1. We give a specific example. let G =R,
H=12Z, K= 20 for some irrational number © . Then C*(Za, R/2)
is the C*-algebra for 2 acting on the circle by irrational
angle 2mo, while C*(z, R/Z0) can be seen to correspond to
rotation by 2% a. These two simple antiliminal,c*-algebras are
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thus strongly Morita equivalent. However, by ‘using techniques
of K-theory it has recently been shown {2,7,8,152 that these two
algebras are not isomorphic, and that, in fact, if o and B
are any two irrational numbers between O and 1/2 then the
corresponding algebras are isomorphic only if o = 8, though
they will be strongly Morita equivalent exactly if o and B8 are
in the same orbit for the action of GL(2, Z) on the irrational
numbers by linear fractional transformations [15].

By using the strong Morita equivalence of C*(X, G/H)
with C*(H,K\G), one can also show that if « 1is a rational
number, then C*(Z«, R/Z) is strongly Morita ‘equivalent to
C(Tz), the algebra of continuous functions on the torus.
Nevertheless, it has recently been shown [5] that for different
rationdl numbers between O and 1/2-these algebras are still
non-isomorphic. This result and the Morita equivalence in the
irrational case described above, as well as the construction
given by Connes [1] of certain modules over irrational rotation
algebras, can, in fact, be illuminated by applying the present
general situation to the case in which G = szCI for various
g ¢ 2 and in which H and K are various suitable cyclic

subgroups of G.

SITUATION lO. Let H and K be any two locally compact
groups, and let them both act on a space P with the two actions
commuting, and with both actions free and wandering as in
situation 2 above. Then C*(X, P/H) and C*(H, P/K) are
strongly Morita equivalent, This is an unpublished result of
Phil Green, and with his kind permission we will include the
proof here.  But before doing so, let us indicate why all of
the earlier situations are special cases of the present ones.

To begin with, it is clear that this is the case for situations
2 and 9 above. But from the comments made earlier, it suffices
to prove that this is also the case for situations 7 and 8.

For situation 7 this can be seen by letting P be the
pull-back of © with the natural map of G + G/H. That is,
P={(x, m) ¢ GxM:7w(m) = x}, where the left action of G = K on

(yx, ym), while the action of H on
-1

P is given by y(x, m)

P 1is given by s(x, m) (xs =, m), Then F/G is identified

with 7 2(&) by (x, m) » x Im, while P/H is identified with .
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M by (x, m) - m.

It was Paul Muhly who showed me that situation 8 could be
viewed as a special case of situation 10 as follows. With P
as in 8, let Q = RxP play the role of the P above. Let
H=2 and K = R. Define a cocycle, ¢, on 2ZxP by
- e(0, p) =0, c(n, p) ==z(F(h¥(p)).0cksn-1) 4if n 2 1, and
ZKF(hk(p)):nsks-l) if n < -1. Let H=2 act on

c(n, p)
Q by -
' n(r, p) = (r+c(n, p),h"(p))

for n ¢ 2, r ¢ R, pe P, and let R act on P by

t(r, p) = (r+t, p).

The action of H can be seen to be wandering because of the

strict positivity of F.

Proof for situation 10. The proof can be considered to
be a combination of the wandering techniques developed in [ 3]
together with the techniques used in [12] to treat situation 9
above. As mentioned earlier, the wandering hypothesis is
easily seen to imply that P/H and P/K are Hausdorff (locall&
compact) . Let A = CC(K, P/H) and . B = Cc(H, P/K) or, at the
end, their C*-completions. Let X = Cc(P). We make X into
an A-B-equivalence bimodule as follows. et K and H act on
the left and right of X by

P |
Brk)*E£(k “P)

(k£) (p)
-3

(£s) (p) = L,(s) °£(sp)
for f ¢ X, k ¢ K, s ¢H and p € P, where AK and AH are the
modular functions of K and H respectively. Let C_(P/K)
and C_(P/H) act on X by pointwise multiplicationL If we let
K act on C_(P/H) by ordinary translation, then it is easily
verified that the representation on X of the pair (K, C_(P/H))
is “covariant® and so gives a representation of A on X by

o) (@) = [ o0c, prag 0 ¥ pyax
for ¢ ¢ A, £ ¢ X and p ¢ P. In thé same way we obtain a right
action of B on X by
(£0) (p) = [E(sm)fus, sx)a,(s) Fas
for £ ¢ X,'Q € g.and p ¢ P. It is easily verified that these
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actions of A and B on X commute, so that X 1is an
A-B-bimodule. We now define A~ and B-valued inner products
on X by

<€, g>,(k, P) AK(k)'%fo(s'lp)E(k'ls'lp)ds

£, wys, B) = by F[ T TIprg i sprak
for £, g ¢ X, s ¢ H, k ¢ K, p ¢ P. Then all the properties
of an A-B-equivalence bimodule are verified by routine
calculations except the following:

a) the positivity of the above inner products

~b) the density of the span of the range of the inner products

¢) - the continuity of the module structures with respect to the
inner products.

To verify these properties we must construct approximate

identities for A and B of a very special kind. Since the

roles of A and B are almost symmetric, we will carry out the

construction only for A. Then what we must show for A is

that it has an approximate identity all of whose elements are

sums of terms of form <f, f>, for various f e X.

LEMMA.” Let K be a locally compact group which acts on a
locally compact space P such that the action is free and
wandering. Then for each p ¢ P and each neighbourhood N of
the identity element of 'K there is a neighbourhood U of p
such that

{k e K:kUnU # ¢} ¢ N.

Proof. Let N and p be given. If the lemma is not
true for N and p, then for each neighbourhood U of p
" there are kU ¢ K and Py € U such that kU £ N but
kUpd e U. Fixing some compact neighbourhood, D, of p, we
can restrict attention to the U ¢ D. Then kUDnD # ¢ for all
such U, so that by the wandering hypothesis there must be a
compact set C in K such that kU € ¢ for each U. By the
compactness of C we can pass to a subnet, still denoted by
kU’ which converges to an element, say k, of K. Since N is
a neighbourhood of eyx and kU £ N for each U, it follows
that k # ex- But Py clearly converges to p, as does kUpU‘
It follows. that kp = p, which contradicts the freeness of the
'action. Q;E.D. )
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Now it is easily verified that one has an approximate
identity for A if one has a net, QN D.c indexed by
14 4
decreasing neighbourhoods, N, of eyxr increasing compact

subsets D of P/H, and decreasing ¢ > 0, which satisfies:

1) ) (k, p) = O if kX ¢ N, and = O otherwise,
N,D,c

2) ]IKA(k)%¢ (k, p)dk - 1}< ¢ for p e D.

N,D,t

In fact, such a net will be an approximate identity for the
inductive limit topology on A, and so for both the C*-norm
on A and the action of A on X.

We now construct such a net in a special way. Let N,D
and ¢ be given. Let 7 denote the projection of P onto P/H,
and choose a compact subset C of P such that #(C) 3 D.
By the above lemma we can find a finite open covering, Ui’ of
C such that for each i

{k e K:kU;nU, # ¢} ¢ N..

Then for each i we can find hi € Cc+(Ui)' such that Zhi is

strictly positive on C. Let
F§) = )y, (s"Ip)as,

so that F is strictly pdsiti&e on D. Let
m= (inf of £ on D)/2 and G = sup(F, m),

and let £ (p) = h, (p)/G(P), so that f, e cc+(p). Then we
see that :
ZIHfi(s-lp)ds =1 on D, and is between O and 1 elsewhere.
Furthermore, we see that
{k:k(support(fi))n(support(fi)) # ¢} ¢ N.
In what follows this will- insure that condition 1 is met.
To motivate the next step, suppose that we had
b = Z<gi, gi>A for certain g; € X. In trying to verify
condition 2 above we would calculate
. ' -1 - =1 -1
IKA(k)%¢(k, p)dk = ZJH(gi(s p)JKgi(k s “p)dk)ds.

From this and the construction of the fi we see that if we

could find 95 such that

£,(0) = g, (0] 9, Pprax,
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with, in particular, support(gi) < support(fi), then our goal
would be attained. However, consideration of this equation shows
that it can not always be solved for gi. Nevertheless it can
be solved approximately, and it is easily seen that this is
sufficient (which explains the presence of the ¢ in the above).

LEMMA. Functions of the form g(p)ng(k'lp)dk for
g € cc+(P) are dense in Cc+(P) for the inductive limit
topology.

Proof. Let f ¢ Cc+(P) and 6 > O be givenf Define F
on P/K by F(P) = fo(k’l p)dk. Let C = {p ¢ P:f(p) 2 §}
and let C be the image of C in P/K. Note that F(p) > O
for p € C. Let m= inf{F(p):p ¢ C}. Since ¢ is compact,
m>0. Let U= {p:F(p) > m/2}, which is a neighbourhood of
¢, and choose Q ¢ C.(P/K) such that 0 < Q s 1, Q) =1
for pe€C and Q(d) =0 for P # U. Then Q/((FY) ¢ c_(B/K).
Let g = fQ/(F%). Then g ¢ Cc+(P) and support(g) & suppbrt(f).
Furthermore, a simple calculation shows that

l£@) - 9] gt prakl s 6 for all p. - 0.E.D.

We now turn to the proofs'of the three properties listed
earlier as being still needed for the verification that X is an

A-B-equivalence bimodule. Throughout we will denote an element
of the approximate identity constructed above simply by

® = I<g4s 93 : _

a) Positivity. For any f ¢ X it is easily seen that’
<¢f, f>B converge to <f, f>B in the inductive limit topology
and so in the C*-norm. But

| <of, f>B = z<<gi, gi>Af' f>B
* .
= z<gi<gi, f>B, f>B = z<gi, ?>B <gi' f>B’_

which is clearly positive.

b) Density. If ¥ ¢ A then ¥x® converges to VY. But
Yad = Z<ng, 9>

c) Continuity. The existence of the special approximate
identity is used only in the form of the positivity proved above.

We indicated earlier that the action of A on X comes from
the corresponding "covariant" representation of K and C.(P/H)
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on X. A simple computation shows that the action of K on X
is "unitary" for «, >B* If F e C_(P/H), then the fact that
IIf]I2 - F*F has a sgquare root which is a bounded continuous
function on P/H shows by a standard argument (using positivity)
that the action of C_(P/H) is a norm-decreasing action by
operators which are "bounded" with respect to <, >B* Passing
to the integrated form (and using states of B), we obtain the

desired continuity.

By reversing the rolesof 2 and B one obtains the

remaining desired properties.

Recently D. Williams has obtained fairly general results
concerning when transformation'group C*-algebras are C.C.R
(liminaire) [17] and when they are continuous tracé algebras [18].
The techniques he uses are closely related to those described
above, involving strong Morita equivalence and suitable wandering
hypotheses, but he must also use hypotheses to the effect that
the stability subgroups vary in a suitably continuous way. Thus
his results do not fall within the framework described above.
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