Noae 2 Roatfo!

Throughout the first four secticns cof this chapter U will always

and

—
w

dencte a recl or complex velued measure on a measurable space (x, s

B will dencte a Panach space. If U tskes complex values, then B will

[N

be assumed to he over the field of complex nurbers. We will write scalars
on the right as well as on the left of elements of B. All mesasurable

functions will be acsumed to have values in B unless the contrary 1s

explicitly steted. By mcesurable sets we will zlways mean U-measurahle,

4.1 Definition. An intesrable simvle funciiorn (ISF) with respect

sle U-measureble function f whose carrier has finite

n
Y b.X, where the
Lo Ci%E,

-measure. Thus an ISF can be represented as

i=1l i
E. sare disjoint u-measurable sets of finite ~-meacure, and the b, are
i J i i
in E.

We would like to define the integral of f with respect to u to
be biu(Ei), but we must first show that this quentity is independent of
the representation of f.

m n
! 2. (o = i 7 v .
t.2 Lemm Ir 2 biin 2 CjXF as functions, where the El. are

J
m n
disjoint and the Fj are disjoint, then 2 biu(Ei) =) cju(Fj).
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Proof. We may assume that the bi and c¢, are non-zero. BSince the

[}

two functions are equal, their carriers are equal, and sO @>Ei = QﬁFj.

Tt follows thet E. = ®E. NF, for each i, and that F, = €F, NF,
i ] 1 J J 3 i J

for each j. Thus we have

.2. b Xg nr, T L bixg = ) CiXp, T L C5XE . NF,
1,3 i J 1 1 J 1,d J J

Since the E, NF, are disjoint, we must heve b, =c, if E, NF, # ¢.
1 J 1 J 1 J

It fellows thset

L puE) =} voulE NTF) = L o H(E, NFy) =2cju(1?j).//

If £ is an ISF representeld by z biXE , and if E 1is a locally
i

U-messurahle set, then XEf is clearly an ISF represented by 2 biXErWE .
i

4.3 Definition. If f is an ISF which is represented as Z biXE

with the Ei disjoint, and if E is a locally measurable set, then the
intzgrel of £ over E with respect to U 1s defined to be 2 biu(E V‘Ei).

It will be denoted by f f(x)au(x), or f fau. ‘If E =X we may write
E E

| fau  instead of [ fau.
X

L.}t Lemna., If f and g are ISF,. then so is f+g, and for any

locally measurable set E. we have f (f+g)au ='f fau + f gdu.
" E E E

Proof. It is-clear that f+g dis an ISF. If f and g are repre-

sented by 2 biXE and 2 CjXF respectively, where the Ei are disjoint
. 1 3
and so are the Fj’ and where Q9Ei'= €9Fi but we allow the b, or the
cj to have value O, then f = '2. biXE.fWF, and g = .Z. CjXE.fWF,’
14 1,J i J

1,J
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)

1,3

-hat BN + /_ . i 3 i N
so that frg (b, cj)in(wfj Since the E,

have

[ (s+g)aw = ) (bi+cj)u(E nE N Fj)

E i,d
= T YE. N ® + NE NT =
} bu(ENE j) '2' cju(E E, rj) /
1] 1.J
4.5 Corollasry. If f is an ISF, and if f

Z biXE where the Ei are no longer reguired to be
i

F. are disjcint, we
J 5

fap + [ gan.t

E E

]

s

v

[o7]

“ny

is represente

then for auny

= w(E NE,).
fau = ] bou(E NE,)

locally messurable set B it is still true that f
E
We will let the realer supply the proofs of the following simple
properties of the integrzl of ISF
4.6 Lemna. Let £ be an ISF and let E be a Jocally measuradle
set.
a) If r is a scalar, then rf is an ISF, and f (rf)day = r f fau,
E E
b) Hle( )l is an 1ISF,
¢) If f is non-nesative real-valued, then [ falu| > g,
E
d) If f and g are real-valued ISF, and if f > g, then
[ ralul > [ aalul,
E E
'e) If f is non-negative and F E.E is locally measurable, then
[ falu] < zaful.
F E
f) If E=F DG with F and G locally measurable, then

[ fau = [ fap+ [ fau.
E F G
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We remark that property a) together with Lemma k.4 shows that the ISF

form a vector space, on which the integral is a linear functicnal.

The next result will be of crucial importance in extending the domain

of the integral to a wider class of functions.

h.7 Lemma. If f is an ISF -2nd if E is a locally.measurable set,

then
I rauh < [ le(xita
e .
Proof. If £ =) b.Xp With the E, disjoint, then he(e)h
i
=) To, b, (4), end so
1
fapll = o, u(E NE,)! ‘ JE AE
I rapl sziu(E Ei)f 5_2”bi”|U\ E,)]

< oyl 05y = [ belotal] (o).

4.8 Definition. On the vector space of ISF ve define the function

bty by bel) = Jir()laful(x). We will call lrl, the L -norm of .

4.9 Lemma. The functicn ".”l is a seminocrm on the vector space of

ISF, that is, it satisfies all of the properties of a norm except that if

"f"l = 0 it does not follow that f = 0 (we can only conclude that

{x) a.e.).

1t
(@]

Proof. If  and g are ISF, then

Jle(x) +gGolalul (x) < [(heGOl + TeG)lalu] (x

JizGotalul () + [letolafuf(x) = bel + "g"l

+ell
E g 1
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We will let the reader verify that h-Ll also satisfies the other properties

of & seminorm./

By mezns of the seminorm ”‘“l’ we define a semimetric, d, on the
vector space of ISF by a(f, g) = ”f—gﬂl. Thus, as mertioned in Chapter O,

d is a function which satisfies all of the properties of a metric except

that if da(f, g) = 0 it does not necesserily follow that f = g. This

semimetric defines a topology, that is, a collection of open sets,on the
vector space of ISF, but this topolcgy need not be Hausdorff, that is,
limits of seguences need not be unigue (but we will find that they are

2

unioue z2.e.). Furthermore, the usual definition of uniform .continuity
3 5 N

with respect to a metric is equally applicable 1o semimetrics, and in the

prescnt cass we have:

4.10 Lemna. For any locally measurable set E, the function

f e f fduy is a uniformly continuocus function on the vector space of ISF.
E

.Proof. This is an immediste gpplication of Lemma b7, for if f and
g are 1IS¥F, then we have
"f fay - [ gapl = ”f (f-g)aul
E E E

< fEHf(x) - glx)lalul(x) < anf(x) - gl)lalu] () = le-gl ./

The usual definition of a Cauchy sequence in a metric space is equally
applicable to a semimetric space, and, of course, a semimetric space is
said to be complete if every Cauchy sequence has a limit (which need not be

unique). One can form the completion of a semimetric space in the usual




- k6 -

way by bteking egquivalence classes of Cauchy sequences, and it will follow

that uniformly continucus functions from a semimefric space into a complete
space will extend to the.completion. The objective of the next sections is
to apply these idezse to the vector space of ISF with the Ll—norm, and to

the vwnifermly continucus functions censisting cf taking the integrals over

locelly measurable setis.

B. Intepgrable functions and convergence in mean

Ara

4,11 Defin: f , of ISF will be szid to be a

mean Csuel v seguence 1f it is a Cauchy seguence with respect to the

: . S . 1
Lienorm, thet is, if imle - I = 0.
m n 1l
m,n

The completion of the vector space of IBF with respesct to the
Ll—norm is by definition the collection of equivalence classes cf mean
Cauchy sequences of ISF, where twe mean Cauchy sequences, fn and gn;
are said to be eguivalent if lim"fn—gn"l = 0. An ISF £ will be identified
with the element of the completion which is represented by the constant
seguence each of whose terms is“f. The méin objective of this section is
to show that each element of the completion can be identified with a
measurable function, which is unique a.e. Thus the completion of the
vector space of  ISF can be identified with a certain space ofAmeasurable
functions, whose elements will be called integrable functions. The
principle tool for making this identification is the Riesz-Weyl Theorem

(Theorem 3.2¢). To place us in a position to apply this theorem, we need:

4.12 Lemma. If a sequence of ISF is a mean Cauchy sequence, then

it is Cauchy in measure.
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Proof. Let fn be & mean Cauchy seguence of ISF, and let € > 0

be given. Let

e}.

|v

= Yoo i " — ::
E = {x€X: I _(x) £ ()]

Beceuse the fn are ISF, it is clear that each Emn is a meszssursble

sct of finite measure, so that each XE is an ISF. Ve must show that
<l !
im |1 = 0. it i 2z th / < <) - . na
lim|y (Eﬁﬂ) 0. But it is cleer that g < fn( ) fm( Yi/e, and so
m,n nn

by Lemma L.6d we have

le —f | .
n fm'l/g

ul 2 iz (x) - £ (/e afu(x)

The result now follows from the fact that the fn form a mean Cauchy
. V4
sequence./

£

eyl theorem that if

T

It follows from this preposition and the Riesz-V
T is a mezn Cauchy sequence cf ISF, then there is a meas rable function,
f, to which fn converges in measure, and f is unigue a.e. Ve would
like to identify f with the element of the completion of the vector
space of ISF corresponding to the éequence fn. But before we can do
this, there are twq things that we must check. To begin with, we must be
sure that two equivalent Cauchy sequences converge in measure to the

same function.

4,13 Lemma. If fn and g, are equivalent mean Cauchy sequences,

and if fn converges in measure to f, then so does gn.




L.8

Prool. The seqguence fl, gy > f2, Epoere of 1ISF 1is easily seen to

be a mean Cauchy seguence, and so 1s Cauchy in measure by Lemma h.12. But
it has a subsequence which converges in measure to f. By the same
argument as that used at the end of the procl of Thecrem 3. 26 it follows

that the whole seguence, and so the sequence gn,. converges in measure to

£l

Ve must also show that 2 given measurable function cannot represent

more then one element of the completion of the vector space of ISF. That

is, we must show the

kN fp and gn are two mzan Cauchy seguences of

4=
-
=
-
.
i

L—l
@
03
:
—t

ISF which converge in measvve to a given mescurable function £, then

13 3 t 23
they are egquivalent sequences, that is, Timls —gAH = 0.
n°nl
n

Proof. It is easily secn that it suffices to show that f and g,
have subsequences which are egquivalent. Now by Corollary 3.27 there are
subseguences, T and g respectively, which converge to I &.u. Ve
"k Ty
propose to show that these subseguences are equivalent. Let hk = fr - gnk.

It is easily seen that hn is a mean Cauchy sequence of ISF vhich

converges a.u. to the function O. The proof of this lemma reduces to

showing that "hn“l converges to 0.

Let € > 0 be given, and choose N so that if m, n > N then
ln -n I, < /8. We show that if n > N then ln . < e. To do this, it
n m1l - n 1

i : | < en Int -h 1 Ih . <
suffices to show that th"l ge/2, for then b 1 5_"hn nl o+ thl €.
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Let E Dbe the carrier of hN. Since hN is an ISF, we have
|[u|(E) < . Furthermore, h, is bounded, thet is, there is a comstant, ¢,
such that ”hN(x)” <ec for a1l x. Since h = converges to 0 =a.u., we
7

can find a measurable set F CE such that [uI(E—¢) < g¢/be  and hn

converges uniformly to O on F. Then

pl(x) < f X l1d]u| = clu](e-F) < g/h.

In, {x)ka
IE—F hN §

Now, since hn converges to 0 uniformly on F and since
!ul(F) < o, we can find an integer m > N such that fF"hm(x)Hdlul(x) < g/8.

) 5_1 g GOl = Tn_ () ]afu] (x

l

|f b Gl Ge) = [ o

X n-h . < .
(x) < | m!l /8

< jFlihN(x) - hm(x)l!di "

It follows thet f ”hN(x)”d[u](x) < ¢/k. Thus
F

Ingd = [ I ()
R R G

alul () +  Inglalu] () < e/h + e/h = e/2,
F

as desired./

4.15 Definition. A measurable function f will be seid to be

Bochner-Lebesgue integrable (or Bochner integrable, or jﬁst integrable)
if there is a mean Cauchy sequence of ISF which converges to f in

measure. If T is real-valued, we will say simply that £ is Lebesgue

integrable.

Thus the integrable functions are those which correspond to the points

of the completion of the vector space of ISF. - 0f course, the integral
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of +he ISF over any Tixed locally measursble set, being a uniformly

continuous function, extends to a function on the collection of integrable

functions (because we are assuming that the integral takes values in a

Banach, that is complete, space). Specifically if fn is a mean Cauchy

ience of ISP which converges to f in meaéuxe, then f fndu is a
E

Ceuchy sequence (see Lemma 4.10). Furthermore its limit depends only on f,

for, if g ic another mean Cauchy seguence vwhich converges to f in

neasure, then fn and &, are equivalent Cauchy sequences by Leums

and so f f duy and f gndp will also ke equivalent Cauchy seguences
E E
(agein see Lemms 1.10), and so will have the same limit. Thus wve are free

8

to make:

4.1€ Definition. If T is an integrable function, then its Bochner-

1%

Lebesgue intesral (or Bochner integral, or integral) over a locally

mecsurable set E  is defined to be the limit of f fndu where £ is any
E

n
mean Caucky sequence of ISF which converges to f in measure. This

limit will be denoted by [ fdu or [ f(x)ap(x). If E =X, wewill
E E

denote the integral simply by f fay, or f f{x)au(x). ITf £ is real-

valued, then f fdu is called simply the Lebesgue integral of f over E.
E .

The Lebesgue integral was defined by Lebesgue in his theésis in 1902
for real-valued functions on the real line. .The generalization of the
Lebesgue integral to rezl-valued functions on an arbitrary measure space was
the work of a number of mathemztics. The extension of the Lebesgue

integral to functions with values in a Banach space was developed by

Bochner in 1933.
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For the purpcse of identifying integrable functions with the completion
of +the vector spazce of ISF it was important to use cownvergence in measure,
since a mean Csuchy sequence of ISF ealways converges in megsure as vwe
have elready se:zn, but need not converge a.e., much less a.u. However,
for the purposes of defining integreble functions and their integrals, these
other types of convergence are egually satisfactory, as the following

proposition shows.

)

1,17 Pronasition. Let £ be a measurshle function. Then the Follcw-

w

ing three conditions are eguivalent: There exists a mean Ceauchy seguence

f of ISF which converges to T

In 11 three cases T is integrable and f dy converges to fayu.
- ’ T n )

Proof. The fact that 1) inplies 2) follows from Corollary 3.27. The
fact that 2) implies 3) follows from Proposition 3.17. Finally, suppose
that fn converges, to f a.e.. Since fh is a mean Cauchy sequence, and

so Csuchy in measure by Lemma 4.12, it follows from the Riesz-Weyl theorem

(Theorem 3.26) that there is a subsequence, T which converges a.u.,
and so both a.e. and in measure, to alfunction g. Bﬁﬁ T converges
to f a.e., andso f=g a.e., so that f converges to f in
measure. Thus f is a seguence satisfying 1). The proof of the rest

of Proposition 4.17 should be clear from the above considerations./




C. Proverties of the Bochner-Lebecgue infegral

In

this section we show that most of the properties which we proved at

the beginning of this chapter for ISF actually hold for integrable functicns.

In fact,

most of the proofs consist simply of combining the properties for

ISF with the definition of integrable functions in terms of mean Cauchy

sequences of IBF.

4.18 Provosition. Let f and g be integrable funétions, and lef

L
(%

£)

g)

locally measuvrable set. Then

f+g is integrable, and f (f+g)dp = f fay + f gdu.
E E E

If I is & scalar, then ri is integrable and (l"f)dl =T iay.
H =3

fe( )l s jntegrable, and "f rapl f_f ie(x)la]u](x). (Wote

that & function is p—-integrable iff it is | ~intesrable).
[

If f is resl-valued and if £ > 0 a.e., then [ faju| > O.

E
If f and g are real-valued and if f > g a.e., then

[ falu] > [ edlu].
E E

If f 4is real-valued and f > 0 a.e., and if F CE is locally

measurable, then f fdlul ﬁ_f fdlul.
F . E
If E=F @Y ¢ with P and G locally measurable, then

[ fau = [ fau + [ fau.
E F G

Proof. We have seen that all of the above properties hold for ISF.

To prove a) let fn and g, be mean Cauchy sequences of ISF which

converge a.e. to f and g respectively. (We use condition 3 of




Proposition 4.17) Then fn + e, is easily seen to be a mean Cauchy
sequence of ISF which converges to f+g &a.e., and so

[ (r+g)an = lim [ (f +g )au

E . n K

= 1im f £ dy + lim f g dy = f fdu + f gau.
n E O n B E E

The proofs of the other facts are quite similar, and we leave them to the
reader. We remark that to prove part d) one must show that if fn is a
mean Cauchy sequence of real-valued ITSF which converges to the non-negative
function £ a.e., then so is |fn(')l, so thet T cap be approxi-

mated by & sequence of non-negative IsF.4

Properties &) and 1) above show that the integrable functicns form a
vector space, and thet the integral over any locally measurable set is a

linear function on this vector srpace.

4,19 Definition. We will denote the vector space of i-integrable
P g

B-valued functions by I?(X, S, U, B), (or appropriate abbreviations of

. 1 N . s
this, such as i:a when this involves no amblgulty)

4,20 Definition. On i?' we define a function, "."l’ by

"f"l = fle(x)hd]u|(x) for all f € i?} We will call "f"l the L'-norm

of f.

4.21 Proposition. The function "."l is. a seminorm on ifl

Proof. The proof that "'"l is a seminorm is very straightforward,

and similar to the proof of Lemma 4.9, and so we leave it to the reader./




We would like to see under what conditions en integrable function f
has the property the "f”l = 0, but we first need some preliminary results

which are of some independent interest.

4.22 Proposition. If f is an integrable function, then the carrier

of f is o-finite.

Proof. Let fn be a mean Cauchy secquence of ISF which converges to
f a.e., and let En be the carrier of fn. Since fn is an ISF, En

has finite measure. But the carrier of f is contained in the union of

all the E_ together possibly with a null set./

h.23 Proposition. Let f be a non-negative integrable function, and

let E Dbe a messursble set. If f z-XE a.e., then ]ul(E) <o, In

particular, Xg is integrable.

Proof. It is clear that, except for a null set, E is contained in the
carrier of £, and so is 0-finite. Thus there is a sequence, En’ of
subsets of E of finite measure which inc*eases up to E, so that
Iu](En) increases to IuI(E) by Proposiﬁion 2.16. But Xg is imtegratle

for each n end f 2 X; &.e., S0 that according to Proposition 4.18e
n

we have

¥18) = [ xg alul < f salu]
It follows that

lul(8) < | gajul./
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4.2L Definition. A sequence, f , of integrable functions is said

equence) if it is a Cauchy seqQuernce

m

to be Cauchy in mezn (or a mean Cauchy

. 1 . ; . .
with respect to the L -norm, that is, if 11m”fn—fm”l = 0. A sequence, £
m,n
of integreble functions is said to converge in mean to an integrable

function £ if lim”f-—fn”l= 0.
n

4.25 Proposition. If a seguence of integrable functions is Cauchy in

mean, then it is Cauchy in measure. If a sequence of integrable functions
converges in meen to an integrable function f, then it convergss in

measure to f.

o

Proof. For mean Cauchy sequcnces the proof is the same as the proof of

Lemma 4.12 except that we must use Proposition 4.23 to be sure that v
1 I Xg
mn

is integrable. where Emn is defined as in the proof of Lemma 4.12. The
proof for the case of a mean convergent sequence is just a slight variation

of the proof for the case of a mean Cauchy sequence./

4,26 Proposition. Let f be an integreble function. Then ”f”l =0

if and only if f =0 a.e.

Proof. It is clear thet if f =0 a.e. then llf"l = 0, for the
mean Cauchy sequence of ISF each of whose terms is the.function 0 will
converge to f a.e. Conversely, if "f"l = 0, then the sequence each of
whose terms is the function O converges to f in mean, and so in measure
by Proposition 4.25. But this sequence also converges to 0 in measure,

and so f =0 a.e. by Proposition 3.21./
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. \ . . 1 .
It is easily seen that the collection of functions whose L -norm 1s
b RN i
0 forms a subspace of 4. , and that iy defines an actusl norm on the
.. . 1 . .
factor space obtained by factoring j:- by this space of functions whose
1 . . . . PP
L -norm is zero (that is, on the space obtained by identifying any two
. 1 o : s
functions the L -norm of whese difference is zero). Proposition 4,26

shows that this factor space consists simply of the equivalence classes of

integrable functions which agrees a.e.

4,27 Definition. The normed space consisting of the eguivalence

3

tle functions which egree a.e. will be denoted by

classes of integr

D

. . e . . 1
(X, S, u, B), (or appropriate abbreviations of this, such as L ). Ve

. 1 . ) .
will denote the norm on L~ again by "»hl, and refer to it as the

Qur motivetion for defining ;{} was to obtain a completion of the
. 1 1
vector space of ISF. Thus we would expect ;ﬁ , and so L7, to be complete,
so that Ll is a Banach space. Ve will now begin to verify this fact.
The next few results essentially,parallel'the usual proof of the fact that
the completion of a metric space is in fact complete, but they also yield
some other useful pieces of information. The first of these results
. 1 el . .

essentially shows that the L -norm on iL gives the same metric as that
which we would have obtained by the usual process of extending the metric

on a metric space to a metric on its completion. Note that we did not gquite

define the Ll—norm by this process.

4.28 Lemma. If fn is a mean Cauchy sequence of ISF which converges

to f in measure (or a.u., or a.e.), then fn' converges to f in mean.
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Proof. It is easily seen that for each fixed n the sequence
"gm(-) - fn(°)" is a mean Ceuchy seguence of ISF which converges to

ir(e) - fn(')ﬂ in measure‘(or a.u., or a.e.), so that
“f—fn"l = f”f(x) - fn(x)"dlu](x)
= 1;];1 [te (x) - £ Golafu|(x) = limllfm-ifnlll.

If for a given € > 0 we choose N large enough so that "fm—fn"l < g

whenever m, n > N, then for n > ¥ it follows that "f—fn“l < gl

k.29 Corollary. The vector space of ISF is dense -in iﬂ' with

respect tc the Ll norm.

This corollary is, of course, just a speciasl case of the fact that a

metric space is dense in its completion.

4,30 Theoren. ]:}, and so Ll, is complete.

Proof. Let fn be a mean Cauchy sequence of elements of 19. Using
Corollary 4.29 choose for each n anA ISf g, such that "fn—gn"l < 1/n.
It is easily seen that g, is a mean Cauchy seguence, and so by the
Riesz-Weyl theorem (Theorem 3.26) g, -converges in measure to a measurable
function, f, which must thus be integrable. By Lemma 4. 28 e, converges
to f in mean. It is easily seen that this implies that fn converges

to f in mean (basically because fn and g, are equivalent Cauchy

sequences )./

We conclude this section with some consequences of Corollary 4.29.
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k.31 Proposition. Let f be an integrable function. Then for every

£ > 0 there is a measursble set E of finite measure such that
f Hf(x)”d|u|(x) < e,
X-E
Proof. Given € >0, we can, by Corollarj h.29, fiﬁd an ISF, g,
such that Uf-g”l < e. Let E be the carrier of g, so that E is a
measurable set of finite neasuvre. Then |

f heGoyllau](x) = f fe(x) - g(x)ﬁdlpl(x) S.nf‘8"1-< e
X-E X-E

L.32 Proposition. Let f be an integrable function, and let E be

£2

a locally measurable set. Then

f fdy = j XEfdu.
E

Proof. It is easily verified that this equality is true whenever f

cF

is an ISF. It is also easily seen that both sides of the equality are
. . R - . 1
continuous functions of f with respect to the L -norm. From the fact

that the ISF are dense it follows that the equality holds for all £/

D. The Indefinite Integral of an Integrable Tunction

Let f ©be an integrable function. In this section we will study the

properties of f fdyu as a function of E..
’ E .

4.33 Definition. Let f¢€ z;l(x, S, U, B). Then the set function e

defined on the o-field of locally measurable sets by

Ho(E) = IE fdp
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(and so having values in B) will be called the indefiniievintegral off f.

4.34 Theorem. For every integrable function f the set function

uf is a memsure.

Proof. We must show that We is countably additive. We will show this
by first verifying it whenm f is an ISF, and tlcn, in the general case,‘

by epproximating f by ISF.

Assume now that £ is an ISY. If = bXF for some b € B and scme
measureble set F of finite measure, then uf(E) = bu(E FIF) for every
locally measureble set E. Thus the countable additivity of Ue follovws
immedietely from the countable additivity of u. But every ISF is Jjust

a finite sum of terms of the form by,, and so the theorem is true for
&L

any I8F
The proof in the general case depends on the following inequality:

4.35 Temma. If f and g are integrable functions, then

"uf(E) - ug(E)" 5_“f—g"l for evéry locally measurable set BE.

Proof. "uf(E) - ug(E)" = If fau + [ gaul < [ he(x) - g(x)a]u](x
E . E- E _
ﬁ‘ﬂf—gﬂl 4 ‘

We return to the proof of Theorem 4.3L. Let a locally measurable set

o0

E be given, and let E= & Ei’ with the E.. locally measurable. We
j_:

have already seen that W, is finitely additive (Proposition k. 18g) and

so to prove countable additivity it suffices to show that uf( &9 E )
i=1
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converges to uf(E) as n goes to =, Let € >0 Dbe given. Choose an
ISF g such thau Uf—-g“l < g¢/3. We have just seen that pg is countably

additive, and so we can chocse N so that if n > N then

IIug(E) - ug( .

n
3] Ei)“ < ¢/3. Then for n > N we have
i=1

n
Huf(E) - uf('ea Ei)ﬂ

i=1
I [ & 0+ Iy (& s
< E) - B o+l (B) - & E. + | ® B,) - & E,
< T (®) ug( ) Jg( ) ug(i=l ) ug(izl E, ) uf(i=l E,)I
< lii’-glil o+ e/3 + llf—glfl < ed

The next propesition shows how to compute the total variation of My

4,36 Proposition. Let f be an integrable function. Then for

each locally measurable set E we have

luel (B) = [ FeGolaju] (x).
E

n

$ E.. Then
. i

i=1

[ Ie(ela]u] (o).
E

il

Proof. Let E be given, and suppose that E

il

n n n ’
T h(e)l= § 0 sl < § [ beGokajul ()
+ i=1 E, i=1 E, '

i=l i=
i i

It follows that |u,|(E) < [ le(laju] ().
E

To prove the reverse inequality we first show that it is true when f

is an ISF, and then obtain the general case from the fact that the ISF

are dense in ;f,l.

k

Suppose now that f is an ISF, and let f = ) bixp vhere the F,
k i
are disjoint. Let F = © Fi' In the proof we must take into account the
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definition of [pl, and so for each i suppose that measurable sets Gi’
n,

i
are given such that E N Fi = & Gij' Then
J

[uel(®) = oz 0F) > 7 (o, Ol

i,
= Y If rfapl = o, IHue, )
i3 6., i% * +d |
i
= ] T 1] ute; )]
i J

It follows that
!qu(E) 2_2 ”biﬁlpl(Fi NE) = [ Ie(x)lalu](x),
i E '
so that the theorem is true whenever f 1is an ISF.
To complete the proof we need the fcllowing Lemma:

4,37 Lemme. Let W and V be measures on a measurable space (X, S)
with values in B (so that p+v is defined by (p+v)(E) = w(E) + v(E)).
Then Iu+vl 5'|u[ + Iv!, in the sense that for each E € 8 we have
[utv| () < |u|(E) + |V[(E). Consequently, ||u]|(E) - [V|(E)] < |u-v]|(E)

for all E € S.

n
Proof. If E=€9Ei, then

n n n
Y M) ) < ) e+ ] (e < ul(E) + [v](E).

The desired inequalities follow immediately./




We now return to the prcof of Theorem 4.36. Suppose now that f and

g are integrable functions and that E is a locally measurable set. Then

[ Tugl(2) = Ju (B ] < fupmu [(E) = lu(f_g>l(E)

< J Me=gdOalafu] () < [h(e-g) (o) la]ul (x) = r—gll.

It follows that qu}(E) is & continuous functicn of f with respect to the
1 . . - . lie I / . n
L -norm for each fixed E, &5 is f [£(x) d]u {x). Since we have seen that
the eguality which we wish tc prove is true for the ISF, and since these
\"l

are dense in J, it fcllows that the equality is true for all integrable

functions./

The incefinite integral of a u-integrable Tunmction is closely related
&
to the measure M. The following definition and proposition provide one

£

useful acpect of this relation.

4,38 Definition. Let m and W be arbitrary measures on a measurable

space (X%, 8). We say that m is strongly absolutely u-continuous if for

each € > 0 there exists a & > 0 such that |m|(E) < € for all E €S

such that |u|(E) < 6.
We will examine some related types ofAu~continuity in chapter 7.

4,39 Proposition. Let Y be a scalar-valued measure and let f De

a U-integrable function. Then the indefinite integral, Hpo of f

(viewed as defined only as measurable sets) is strongly absolutely

H-continuous.
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Proof. Again the proof involves approximating f by ISF. Let.
€ >0 be given. Choose an ISF g such that "f—g”l < g/2. Since g is
an ISF it is bounded, so there i1s a constant, ¢, such that "g(x)" <ec
for all x. Let & = g/(2c). Suppose now that E is a reasurable set

such that |u|(E) < 8. Then

< e-ghy + clu|(8) < e

A typical epplicetion of this proposition can be found in the proof

of Theorem 4. L0.

E. Some convergence theorems

In this section we derive some theorems which are very useful in
determining vhether a sequence of integrable functions converges in mean to
a given integrable function. As a corollary of the first of these theorems

we will obtain a very useful characterization of integrable functions.

4. 40 Theorem. (The Lebesgue Dominated Convergence Theorem). Let fn

be a sequence of integrable function which converges a.e. to a (necessarily
measureble) function f. If there exists a.real—valued integrable function
g such that ufn(x)" < g{x) a.e. for each n, then the f ~form a mean

Cauchy sequence, f 1s integrable, and fn converges to f in mean.

Proof. Let € > O be given. By Proposition 4,31 choose a measurable

set E of finite measure such that [ g(x)dju|(x) < /6. (Note that

g > 0 a.e. so that we don't need to take absolute values). Then for all
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m and n we have
fX—Eﬂfn(x) - fm(x)"dlul(x) f_fX‘E"fn(x)"dlul(x) + IX_E"fm(x)”dlul(x)

<2 | glx)ajul(x) < e/3.

We saw in the last section that u_ 1is strongly ahsolutely p-continuous,
so we chocse & > 0 such that il lﬂI(G) < ¢ then |ug|(G) < 5/6;' Since
E has finite measure, it follcows from Egoroff's theorem that the sequence
fn converges to f a.u. on E. Thus we can choose a mea;urable set FCE
such that Iu!(E-F) ; § and the sequence fn converges to f uniformly
on F. Because of the way in which § was chosen, and because |p|(E~F) < €,
we have for all m &and n

f ”fn(x) - fm(x)ﬂd|u}(x) < f. "fn(x)ﬂd[pf(x) + f Ufm(x)”diu!(x)

E-T E-F E-F

<2f  glx)alu](x) = 2l | (B-F) < /3.
i

g

Finally, since the sequence fn converges to f uniformly on F, vwe
can find N such that if m, n > N, then an(x) - fm(x)ﬂ < e/(3 || (F))
for all x € F. Then for all m, n > N we have
J e (x) - £ (xMaful(x) < [ e/(3u|(F))aful(x) = e/3.
n m
F v F
It follows that for all m, n > N we have
le - I, = (f + f + f e (x) - £ (x)Ma]p](x) <&,
noml Vygy ‘gr F P ™

‘so that the fn form a mean Cauchy sequence as desired.
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Since ' is complete, the sequence fn converges in mean to some
integrable function. By Corollary 3.27 a subsequence of the fn converges
a.e. to this same function, and so this function must equal f a.e. Thus

f is integrable and fn converges to £ in mean./

Bochner did not deline integrable B-valued Tunctions in the way that
we did in Definition 4.15. Rather, he assumed that the theory of the
Lebesgue integral for real-valued functions was known, and be defined integrable
B-valued functiong to be measurable‘functions which are dominated in norm
by an integrable resl-velued function. The next theorem shows that his
definition is equivalent to Definition 4,15, But the main reason for our
interest in this theorem is that it gives a very useful characterization of

integrable functions (see for example the proof of Theorem 5.h).

4. 41 Theorem. Let U be a scalar-valued measure on (X, S), and let

f be a p-measurzble B-valued functicn. If there is a real-valued
U-integrable function g such that Hf(x)l < g(x) a.e., then f is

H-integrable.

Proof. We must produce a mean Cauchy sequence of ISF which converges
to f ‘a.e. Since f is measurable, we can find a sequence, fn’ of simple

measurable functions which converges to f a.e. For each n let

h_(x) = [r,t0 1 B 0T < 280

0 if "fn(x)" > 2g(x).

Equivalently, if we let E = {x : 2g(x) - an(x)ﬂ > 0}, then
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h Since En is clearly locally measurable, it follows that each

=T .
n nXE
n
hn is also a simple measurable function. It is easily seen that the
sequence hn converges to f a.e., and we have Just arranged matiters so
that for each n we have th(x)” < 2g(x) for all x. But it is easily
seen by using Proposition 4.23 that this inequality implies that each hn
is integrable, vwhich is something which did not need to be true for the fn.

It follows from the Lebesgue dominated convergence theorem (Theorem L.L0)

that hn is a mean Cauchy sequence and that f is integrable./

The remeining theorems of this section involve the order properties of
the real numbers, and so do not generalize to vector-valued functions.

However these theorens are very useful for working with vector-valued

functions, as we will see in the next chapter.

4,2 Theorem. (The Monotone Convergence Theorem). Let fn be &

sequence of real-valued integrable functions which is non-decreasing &a.e.

(that is, for each n we have fn(x) > _(x) a.e.). If the sequence of

n-1
the ncrms of the fn is boundéd, that is,'if there is a constant, c, such
that "fn”l < c¢ for all n, ‘then fn is a mean Cauchy sequence, anrd there
exists an integrable function f such that fn converges to f a.e. and

in mean. In particular, f fndu converges to f fdy. The same result holds

if instead the fn are non~increasing a.e.

Proof. If the sequence fn is non-increasing, then the sequence
- fn is non-decreasing, and so it suffices to consider only the case in

which the seguence fn is non-decreasing. Then the numbers f fnd!ul are




1
=
N
-3
1

ncn-decreasing, and are clearly bounded above by <. and so they form a

Cauchy geguence. But fn - T is either positive a.e. or negative a.e.,

depending on whether or not n is larger than m, and so we have

be - b, = Jlr -2 elul] = [[(e ~e dalull = |fr alul - [ 1 alul].

. . .
Thus f is = . Since jl is complete,

n

. 1 - . .
there exists an f € ji to whiich the sequence converges in mesn, and

th

2

Eut then by Corollary 3.27 there must be a subseguence

of the f  which converges to f a.e. Since the I ere noniecrezzing,
Y n
" N 3 i
it follcows thah the seguence T itself &«lzo converges to T a.e.t

it fn is a sequence of resal-valued integrable func-

4, L3 Coroliary

tions which is non-decreasing e.e. and which converges a.e. to a Tunction :

f and if the seguence of the norrms of the T is bounded, then f is
> n >

O
(o}

¥

integrable and the seguence fn converges to f din mean. In particular,
f frdu converges to f fdu. The same result holds if instead the sequence
1 .

hig is non-increasing a.e.
n

Proof. By Theorexn k. L2 the secuence fn will converge a.e. and in nean

to an integrable function h, which must of course egqual f a.e.t
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By making the cppropriste definition of the integrals with respect to a
non-negstive measure of ve extended resi-valued function
which are measursble in a netural sense, we can conveniently state a corcliary
of the Monctone Conw winich is useful in certain situations. For
a typical application of this corollary sce the proof of Theorem 6.9.
LAl Definition. Let bé a non-negstive measure, a2nd let £ Be_a
non-n wegetive extended X. Let E be the set vhere
T tekes ths value o VWe soy that f  is u-maes if E is v-mezsurable
and if is usuel sense on X - E. If © is py-measuranle,
with respect to u as follows. If
set f fau = e, If p(&) = 0, then we cen view £ as
the null set E, and we then seb f fdpy = e if £ 1s not
integreble in the usual sense, vhereas if I is int ble, then we let 4
f fdy  Dbe the usuzl integral of 1. E
If u is & non-negetive measure and if fn is a non- :

decreasing cequence of y-measurable ncn-ne
functions which converges a.e. to a non-neg

f, then f is p-measurable and the seguence
Proof.

since in the gpplications we meke of this corol

always know in advance that f 1s measurable.
and h are p-measurable non-negative extended

that g > h a.e. then it follows from Theorem

that [ gdu > [ hap. Thus if | f du = = for

cative extended rezl-v

ative extended real-velu

alusd
function

f fndu converges to f fdu.

We will let the reader verify that f must be u-measurable,

lary in these notes we will
We remark next that if g
real-valued functions such
4.41 and Proposition L.18e

then it is

at least one n,
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clezr that the ceauencs f frdu converges to © = f fdy4. On the other hand,

0

: Sequence

G

il all of the i‘1 are integrable, then either the incressin

f T dy  dis unmbounded, in vhich case it is clecr agein that it conve

"ges o

n
o = f fdu, or else it is bounded, in which case we can apply Corollary L.L3
to conclude that T also is integreble and that f £ du egain to

[ faud

We remrrk thot the corresponding statenent for the case in which the

sequence fn is non~Increasing is false in general unless at least one of

the f dis dntegralle (in which case Corollcry 4.L3 is appliceble), for
essencizily the a3 the fact thst Proposition 2.17 is false unless

gt least one of the E has finitc measure.

L4 L5 Theorem. (Fatou's Lemmz). If |1 is & non-negative measure, and

if f is a sequence of non-negative integrable functions, then

In particulzar, if the right hand is finite, then 1lim inf fn is integrable.

Proef. Let gn = inf{fi :n <1< <}. Now gn is the linit as n

.

goes to « of the decreasing sequence inf{fi :n<i<m}. But from
Proposition 3.7 it follows that the infinum of a finite number of measurable
functions is measurable. Thus g, is measurable for each n. Since

lim in?f fn = lin 8 » we see that lim inf .fn is also measurable. Now

g, is a non-decreasing sequence, and so lim f gndu = f lim inf fndp by

Corollary 4.4k, But g, < f , and so / g, du <] f du, for all n.

n

Because the sequence f gndu is non-decreasing, we obtain the inequality
.. S 14 au = ‘;m inf 4
lim inf f fndu > lim f gn u f lim in n U

as desired./
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cmtmet o
GO EES

e

o

1. Show that if f is & real-velued continuous function on [e, n], then

its Riemenn integral on [a, b} is egqual to its Lebesgue inu tegrel on

Hialtili

[a, b, '
2. Let U Dbe Lebesgue measure cn the whole resl Ine, and let B = Ll(p).

Define ¢ function £ frem [0, 1] to B by £{t) = X[ lj],_(or,
more precisely, the eguiva lerce class thercof). Show th f is
continucus, and so, by Exercise 2 of Chapter 3, is also mecosurable.

"

Show thetr f is

. . . 1

mine what fumciior in Lo{u) it is).

3. Shov exists apd is finite, but that (sin x)
is not [0, o).

L., Let B and B' be Eaneck spaces, and let T be a bounded linear
transforrmation from B to B', that is, a linear transformation such
that there is o constent K such that HT(b)”Bi S_KHbHB for all b € B. E
Let | be a scalar measure oOn (X, S). Show that if f 1is a B-valued
p-measursble function, then Tof 1is a B'~valued U-measureble function,
and thet if f is integreble then so is Tof and [ (Tof)au = ([ fau).
5. BShow that if f is & p-integrable scalar-valued funcgion and b € %,
then the B-valued function g(x) = £(x)b is u-integrable, arnd
[ gaw = (f fau)v |

6. Let f be a B-valued function which is integrable with respect to
) t
Lebesgue measure on [0, 1]. If [ fau =0 for all t € [0, 1], what
0

can you conclude about £?



10,

11.

12.

Show that if f is & U-integrable B-valued funciion and if
’ - - . :
| £x)g(x)au(x) = 0 for all scalar-valucd ISP ¢. then £ =0 a.e.

A lefi-continuous ron-decreasing resl-valued function o defined on R

is said to be absolutely continucus if for every € > 0 there is a
6 > 0 such that 2 |G(bi) - a(ai)l < g for every finite dizjoint collection
i=1 n
{[ai, bi) :i=121,....n} of interval for which z (b.—ai) <§. IT a
i=1 ' ’

is any left-—continuous non-decreasing function, show that o is

(F

ontinuous if and only if the corresponiin

€
s
O

mezsure is

Find & seguence fn of iptegrable furciions which converges a.e. to an
f but such thet [ £ éu does not converge to
’ n it
fdyu. . This shows that some condition such as domirztion by an integrable
funetion is necesscsy in the Lebesgue dominoted convergente theoren.
[e0]
N o = . 2y~1 . .
Eveluste 1im [ (1+x"+n(x sin(1/x))¢) ~ax. If you knrew only the theory
' Nep e — P

of the Riemarm integral how would you go about doing this?

. ) , 10 ~ 1 . . ;
Show that (x~ sin x)/(x + log(d+|x|)) /2 is Lebesgue integrable con

The Mean Value Theorem: This theorem ic stated in terms of convex sets,

+3

Fa)
L

and so we will need to disquss first the rudiments of the theory o

convex sets.

a) A subset A of a vector space is calied ‘convex if the line segment
joining eny two points of A lies entirely in A, that is, whenever
a, b € A then ta + (1-t)b € A for all 0 <t < 1. Show that the |
intersection of any collection of convex sgts in convex, so every set

A of a vector space is contained in a smallest convex set called




c{A). Show that

=
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If A is contsined in a Banach space and if c(4) denotes the
closure of c¢(&), show that c(A) 1is the smellest closed convex
set containing A. It is ca]Te the clcsed convex hull of A.

b) The lMean Value Theorem. Let U be & nén—negative measure,.and let

(R4

£ be a B-vazlued p-integrehle function. Then for every measurahle

.

(vhere er_f is as defined in exercise € of Chapter 3). This is the

analorsuz of the fact that if a real valued continucus function I on
[2, b] has values in the interval [m, M], the:
b
(1/(p-2a)) f f(x)ax € [m, M]. Hint: As usual, prove this first for
a

ISF and then spproximate.

c) Prove conversely that if Y is a noﬁ—r cative measure, f 1is a
B-valued U~-integrable function, E 1is & locally measurable set and K
is a closed subset of B, then if (uf(F)/U(F)) € K for every meas-
ureble F CE such that 0 < u(F) < ®, it follows that er f CK.
In particular, if E is measurable then f(x) € K for almost all
X € E. |

13. a) Show that if f is a U-integrable B-valued function then the range
of U, that is {uf(E) : E is a locally measurable set}, is a

relatively compact subset of B (that is, has compact closure).




13.

1k,

b) Show that if U is non—atomic then the closure of the range of uf
is convex. Hint: Use exercise 8 of Chepter 1.
c) Show that if the renge of { 1is countarle, then the range cf He

U is non-gtomic the range of uf is convex).

Hint: Use exercise 15 of Chapter 1.
(L clessical thecrsm cof Lispcuncif states thaet the ronge itse of a
non-aicmic measure with values in & finite dimensionel vecter space

proef of this fact is kuown.

the infinite dimeuns

. P2 . ] . £
evercise 19.7) we will give an example of a function, 1,
gue measure,

hner integreble with respzct to Lebes s

vut such that the range of uf is not convex
d) Find en example of a finite real-vaiued Lorel measure whoss range is
not convex.
IT P is a non-regative measuwy'e on (%, 8) and if m is a B-valued
messure on (X, S) having the property that m(E) = 0 wvhenever u(E) =
(e.g. an indefinite integral), then for every locally measurable set E

define a subset Ag (or more precisely, A_(m)) of B by

Ay = m(F)/u(F) -

FCE and 0 < u(F) < o}, called the "average range"

of m on E. Show that if f is a p-integrable B-valued function, then

(ard so alsc not closed).

0

U locally almost has compact average range, that is, for every measurable
£ Y

with u(E) < @ and for every € > O there exists

set E FEE with

u(E-F) < ¢ such that A is relatively compact. This and the next

F

three exercises are closely related to the Radon-Nikodym theoren which

we will consider in Chapter 7. Hint: Use the results of exercise 5 of




1k, (cont) Chapter 3, the mean value thocrem (exercise 12 above), and the
fact that if A is compact then so is c{f). To prove this last result,

show that cof4) is toizlly bounied if A is.

s called 2 cone (with vertex at 0) if

1
e

ce

L

15. A suhset C of a vector sp
tec € C for every c € C and every scalar + > 0. If A is & subset

of a vector space, then the cone generated by A is defined to be

k3

{ta : a € 4 and t is a non-negetive scalsr}. Show that if p is a

]
non-nesshive measure and it f is a u-intesrable B-velued function,

ther locoily uf somevhere hes compact dirsction, theat is, for every

il —

with 0 < p{E) < o« there exists F CE and a

compect subzet K of B not containing O such that p(E) > 0 and
16. With u, T and A, as in exercise 14, show that Mo locally somewhere

E of finite measure and every € > 0 there exists a measureble set

\%

FCE such that u(F) > 0 and the diameter of A, is less than €.

Recall that the diameter of a set K CB is sup{lb-d'l : b, b' € K],

17. Let Y be Lebesgue measure on [0, 1], and let B = Ll

(o, 11, w).
Define a function, m, on the o-field of Lebesgue measurable subsetis
of [0, 1] with values in B, by m(E) = Xg (or, more precisely, the
equivalence class thereof). Show that m is a measure. Compute the
total variation of m., Is m strongly absolutely u—c&ntinuous? In
spite of this, show that m cannot be the indefinite integral of any
p-integrable function, because it does not satisfy the properties

described in exercises 1, 15 and 16 above. Also show that the closure

of the range of m is not convex. (Compare with exercise 13.b) above.)



18.

19.

4,35 -

&) Let ¥ %be a non-atomic non-negative measure, and lev f be a

P-integrable B-valued function. Show that for any locally mcssurable

set E the closure ©

L) Show thet if m is the mezsure of exercige 17, then the closure of

AE(m) is not convex,

¢) Find a real-valued function, T, integrable

Pamm)
T2
H
pa—
[N
1521
]
O
ot
[

measure M such that AP

reble function for which

Fin

jol)

o
[of)
o™
=
(I\
m
15
@]
51
[
——
s
o
)
oY
4]

There gve several wiys O

in a Banach space

our definition can still be interr ated), but which are less vell

stood then the Bochner integral. Ve will not try to give a precise

o}

iitions, but in this exercise and the

o

descripticn of these other defl
next one we will give some suggestive examples of one of them (another
can be found in exercise of Chapter 5).

Let 1 be Lebesgue measure on [0, 1], eand let B =1 ([0, 1], )
(see exercise 7 of Chapter 3). Define 2 function, f, from [o, 1] to
B by f(t) = X[0,t] (or, more precisely, the equivalence class thereof).
a) Show that f is not measurable.
b) We would nevertheless like to have a meaning for f fdu for every

E
p-measurable set E. To obtain a feeling for what the value of this




c)

fo]
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o,

(cont) integral should be, view £ as & function with values in

1 A .
B' = ([0, 1], H), and show that now it is measurable, and in Tact

integrable (see exercise 2). Thus uf is well definc:d as a measure
with velue in B'.
Show that uf(E) is a contimuscus functich (more precisely, the

equivalence clacs of uf(B) contains a continuous Tunction) For every

~ PO
measuralie

c(fo, 11)

as fcllewsz:

a d ~N <03 T 3 - N .
and let g, h /7= f gh dp.  Shovw that Tor any h € B' the function

a . ' s
for the duality ~ ., >). Then verify thzat

< (E), n> = [ <1(t), n>aplt)
E

for every measurgble set E and every h € B'. Hint: GShow it first
when h is an ISF. To do this note that g < g, h > is a bounded
linear functional and use exercise 4. (We thus say that f 1is weakly
integrable for the duslity, <, >, between B and B', and that
the weak integral of f over any set E 1s the vector uf(E). Thus

uf viewed as having values in B can be considered to be the indefin

integral of the weakly integrable function f.)

ite
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15, e) Viewing 1}, as having values in C([0, 1]}, show that it is not

7
the indefinite integral of any Bochner integrable function with values

in c¢([0., 1]}, (basically because thus function would have to be ).

2}

This illustrates the fact that a measure with values in & certain
space (e.g. C([0, 1])) which is not en indefinite integral, may be
an indefinite integral in at least a weal sence if the space in which
it is viewed as tezking its velues is enlarged (e.g. to B). DNote that
the rangc of uf is relatively compact. (Why?) )
f) Show that the range of U even vhen viewed as being in B', is nct
closed. Hint: Sheow that the function c(t) = t/2 . is not in the
range of uf but is in the convex hull of the range of uf (and so
must be in the closure of the range of ‘uf). Thus Lispcunoff's theorem
(see comments in exercise 13.¢)) is not true for even the indelinite
integrals of continuous Bochuer integrable functions. (It would be
interesting to have a characterization of those functicns which are in
the range of uf.)

20. Let W be Lebesgue measure on [0, 1], &and let fl’ fosee be the
characteristic functions of the intervals [0, 1/2], [1/2, 1}, [o, 1/3],
[1/3, 2/31, [2/3, 11, [0, 1/b41,... (you mey have discovered this
sequence of sets in answer to exercise h;c) of Chepter 3). Let f be
the functionAon [0, 1] with values in 9" whose value at t € [0, 1]
is the sequence (fl(t), f2(t),...).

&) Show that f is not measurable. Hint: Egoroff's theorem is helpful.

b) Nevertheless we would like to integrate f. In fact we would expect
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2¢. b)(cont) that

d)

[ rau = (f goau, [ fya,.)
E E E

for any measurable set E. If ve define (E) f fau v the

E

above formula, show that it is a reasure, and has finite total

variation.
We justify the definition of the integrel of T suggested ebove in

a menner entirely analogous to the Justification provided in exercise

[eo]
19.4). Given a € £ and b € Ql note t“ai their pointwise product,
[ee]
ab, is in Rlp and let <a, b>= 2 a b Show thet {or every
i=1

1 N . .
b € ¢ the function t - < f(t), b> is measurable (so we say that

£ is weakly measursble for the duality < , >). Then verify that
<y

for every measurable set E and every D ¢ Ql. (We thus say that f
is weakly integreble for the duality < , >, and that the weak
integral of I over any set E 4is the vector uf(E).)

A Banach space of some interest is the subspace of £~ consisting of
all sequences which converge to 0. This space is traditionally
denoted by CO' Show that the range of uf is contained in CO’

and in fact is contained in a compact subset of - But show that

uf cannot be the indefinite integral of a function with values in

c This gives another exeample of the phenomenon described in

0"

exercise 19.e).




S

21, Let U be Lebesgus measure on R. The Fourier traneform of any function
£l e o n . n
£ €y, ¢) is defined to be the function "J(£) on R whose value at

t € R is
t&(f)(t) = f fx)exp(ixt)dx.

. : . 1.
a) Prove thet the Fourier transform of any Tfunctlion in jl is a bounded

uniformly continuous function.

b) Prove that if both f and x b xf(x) are in jf; then Hf) is

gifferentialble end

aFis)

at

(0]

[

{sg) =z§(x‘* ixf(x))(s).’

22. Let G be a topological group, such as R, and let B be a Banzch
space. Then a representation of G -on B is a map, R, from G to
the set of bounded invertible linear opﬁxétors on B (the definition of
a bounded operator was given in exercise 4 above) such that
R(s+t) = R(s)R(t) for all s, t €G (qompositibn of operators). The
representation R is called strongly‘continuous if s Rfs)b is a
(norm) continuous function on G for each b € B, and it is called
uniformly bounded if there is a constant ¢ such that ”R(s)bﬁ f_c"b"
for all t € G and b € B. |
a) If G =R, if M is Lebesgue measure on 'm if B = L;(u, B') where

B' is any Banach space, and if R is defined by (R(s)f){t) = £(t-s),

show that R is a uniformly bounded continuous representation of R.

Hint: Use exercise 1lh.a) of Chapter 1.




22. b)

Let R be a uniforniy bounded strongly continuous representation of
3 3 P

R on 2 Banach space B, and let U bhe Lebesgue measure on R.

1(u, c) define a function, R on B by

For each f € L , £

for every b € B. Show that R, 1is & bounded linear operator on B.
With R and R as in part b, show that there is a sequence, £
il = ° n’

1)  of norm one such that lim Rf b=b for cll
i

of elements of L

b ¢ B. Einl: Try an "approximate S-function'.

This exercise will be further developed in the exercises of

Chepters 5 and 6.



