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Chapter ‘1 - Measures % W

A. 'The domain of a measure

Given a set X, a measure on X Wwill be & rule which in some sense
tells us the size of certein subsets of X. Thus a measure will be a
function whose domain is a suitable collection of subsets of X. By

"suitable" we mean that the family is closed under certain set operations.

1.1 Definition. A nonempty cecllection R of subsets of X is

called a ring if R is closed under the formation of the union and
difference of any two elements of R, that is, if E,Fe R, then EMUTF

and E-F ¢ R (vhere E-F =EMNPF', where F' is the complement of F).

It is easy to see thal eny ring is also closed under the formation
of the intersection of any two of its members, since ENF = E- (E-F) =F-~ (F-E).
Furthgrmore, it can be shown by simple inductive proofs that any ring is
closed . under the formation of arbitrary finite unions and finite inter-

: n : n
sections, that is, if E,...,E ¢ R then \_J B and () E ¢ R.
1 n . i . i
: i=]1 i=1

Note that any ring R contains @ (the empty set), since if E ¢ R, then

#f = ¥-F ¢ R. However, a ring does not necessarily contain the whole set X.

1.2 Definition. If a ring R contains the set X, then R 1is

called a field (also sometimes called an algebra).

In order to define a measure we actually need to be able to form

countable unions of subsets of X. Thus we need the domain of a measure to

be more than just a ring or a field.

1.3 Definition. A collection S of subsets of X is called a

O-ring if S is a ring and if S .is closed under the formaticn of countable
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o
unions, i.e. if Eiél S,i=1,2,... then k“} Ei € s.
i=l
oo o o
Since, if E = U E., then m E. = E - (U (B-E,)), it is
R 1 . 1 . 1
i=1 i=1 i=1

clear that a o-ring is also closed under formation of countable inter-

sections.

1.4 Definition. A o-ring S is called a g-field (also called a

o-algebra) if it is also a field, that is, if X ¢ 8.
ri

1.5 Provosition. The intersection of any collection of rings .

(fields, O-rings or o-fields) on a set X 1is again a ring (field,

o-ring or o-field).

Proof. We give the proof only for rings, since the proofs for the

other cases are similar.

Let .{Ra}aeA be a collection of rings, where A 1is some index set,

and let R = N R, If EJF€R, then E,Fe R, for all o C A, and
ochA
so EUF and BEB-F ¢ Ra for all o ¢ A, and so EUF, E-F ¢ R. Thus

R is a ring.”

1.6 Corollary. Given any collection P of subsets of X +there

exists a smallest ring (field, o-ring or o-field) qontaining P,

Proof. By "emallest" we mean "which is contained in any ring (field,
o-ring or o-field) which contains P". Thus by the propésition just
proved it is enougﬁ to show that there is some ring (field, o-ring or
o-field) which contains P, for the smallest one will be Jjust the inter—
section of all those which contain P. But it is obvious that the

collection of all subsets of X is a o-field (and hence a ring, field and
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O-ring) which contains P./

This corollary allows us to make the following definition.

1.7 Definition. The smallest ring (field, o-ring or o-field)

containing P is called the ring (field, O-ring or o-field) generated by

P. The O-ring generated by P will be denoted by s(p).

Using this definition we can give some important exsmples.

»

1.8 Example. Let X be a topological space, and let
P be the collection of open subsets of X. Then S(P) is called

the o-ring of Borel sets of X.

There is also a different definition of Bofel sets which
is in common use. If X is a locally compact space, than the O-ring
generated by the compact subsets of X is also frequently called the
o-ring of Borel subsets of X. The reader should be able to check that
for the real line these two definitions are equivalent. In fact they are
equivalent for any locally compact space vhich is O-compact, that is,
which is the union of a countable number of compact subsets. However, for

an uncountable space with the discrete topology the two definitions do not

coincide.

‘ 1.9.Examble; Let X be a locally compact space, and let P be the
1
collection of compact GGS contained in X. (Recall that a GS is a set

which is the intersection of a countable collection of open sets.) In

this case S(P) is called the O-ring of Baire sets of X. (If X is a
locally compact metric space, then the reader‘should be able to verify

that the Baire sets are the same as the Borel sets (second definition).)
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1.10 Example. Let X = R (the real line) and let P be the

collection of left closed right open finite intervals, [a,p). It is

not hard to show that S(P) is the O-ring of Borel sets of R. This can
be done by showing that S(P) contains all compact subsets of R (in

fact all open or closed subsets) and that the o-ring of Borel sets contains

.

the half open intervals. For example, [a,b) = \') [a,b ~ %] so
n=1

PC o-ring of Bxrel sets of - R. The remaining detéils are left to the reader
as an’exercise. This example shows, in particular, that two collections
of sets which have no members in common can nevertheless generate the

same 0-field. Note that the o-ring of Borel sets of R is actually a

[o0]
o-field since \V) [-n,n) = R.
n=1

We remark that while Definition 1.7 is a simpk definition, it hides
a great deal. It is often very difficult to decide Whethér a given set
ig in the o-ring generated by a given collection of sets. For example,
it should be far from clear to the reader at this pqint whether or not

every subset of the real line is a Borel set. (But see exercise 9.)

B. The Definition of a measure

A sequence, Ei’ i=1, 2 ... of subsets of a set is said to consist

of disjoint sets if E; N E, = ¢ wvhenever i # j. We will denote the

L

o |
union of such a sequence of disjoint sets by ® Ei instead of \v) Ei,
Ci=l ' Coi=l

to emphasize that the sets are disjoint.

1.11 Definition. Let P be an arbitrary collection of subsets of a

set X, and let u be a function from P into a Banach space, or into
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R° (= RU {+o}). Then W is said to be countably additive (or O-additive)
on P if for every sequence Ei’ i=1,2,..., of disjoint elements of ’;D
[ee] )

o0 oo

P such that € E, 4is also in P, we have (@ E,) = X u(z.).

. i . i . i
i=1 . i=1 =]

»
2 el L
4 o £

_ ”“““iz;k{
The right hand side of this last equation is defined to be the limit in f

the norm topologz of the séquencé Sn’ whéré sﬁ ‘is the nth partial sum
of the series .X ﬁ(Ei). In R, we allow this limits to be + ® in the
obvious sense. &ite that dmplicit in the definition of countable additivity
is thé requirement that the sum of the series must exist for all sequences
.of disjoint elements of P whose union is in P. vNofe also theat in order
to verify the countable additivity of a function it is necessary only to
consider disjoint sequéncés of elements of P -whosé union is again in P.
In some important cases, for example thé P  of Example 1.10, there will be
relatively few such sequences, which will simplify the verification of

- countable additivity. We could also consider functions which take values
in R =RU {~w} but this case is virtually the same as that for R ,

and so we will not discuss it. However we cannot consider o-additivity of

functions with values in R U {-», ®} since there is no suitable defini-

tion of o + (-=),

1.12 Definition. A measure is a function U, whose domain is a O-ring

S, of subsets of a set X, whose range is contained either in a Banach
space or in Rw, and which is countably additive on S. If the range of

y is in Rm, then Y will be said to be an extended real valued measure.

Of particular interest will be non-negative extended real valued measures.

We will call these non-negative measures, leaving "extended real valued"

as understood.
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One example of a non-negative measure is the function Which.has value
® on all members of S. This example is quite uninteresting. However
we remark that every other measure has the property that u(¢) = 0. For
if a measure ﬁ, has finite value on at least one set E, (in particular,
if its range is contained in a Banach space) then w(E) + u(g) = u(®),

and so ﬂ(¢) = 0.

Sjnce the domain S of a measure is a o-ring, every sequence of
disjoint sets in S dis such that its union is in S. Thus this part of
the definition of countable additivity is automatically satisfied. Also,
the property of having & o-ring as the domain allows us to "disjointize"
an arbitrary sequence, E.,, i =1, 2,..., of members of S. Namely, we

1

can construct a sequence of disjoint elements of 8, Fn, n=1, 2,...,

such that F_CE and U E, = ® F_, by letting F, =E and
n P n : 1 1

n
n-1 =1

Fn = En - ’} Ei for n > 1. This procedure will be useful in a number
i=]

of places.

The first problem which arises in connection with the above defini-
tions is to describe means by which interesting and useful measures can be
constructed. In the rest of this chapter, we will describe some ﬁays of
doing this which will involve extending appropriaté set functions so tha£
they become measures. In later chapters we will describe various ways of

obtaining new measures from old ones.

C. An example - Borel-Stieltjes premeasures

Before going on to state and prove our extension theorems, we will

give an example of the kind of set function which we wish to extend,'and
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we will use this example to give an idea of the properties which we will
use to construct extensions. When extended, the set function of our example
will be Borel-Stieltjes (or Lebesgue-Stieltjes) measure on the real line

(depending on the g-ring to which we extend).

1.13 Definitioh (Bgrel—étieltjes premeasure). The domain of the set
functions which we will define will be just the family P of Example 1.10,
that jis, the faﬁily of left closed, right open finite intervals, [a, b), on
the real line. Note that [a, a) = ¢. The functions are defined as follows:
Let o be a real-valued non-decreaging left continuous function on R.

Define a function, u , from P to R by ua([a, b)) = a(b) - ala).

The assumption that o 1is left continuous will be quite important.
It is not hard to show that the theorem which we will prove in this section
is false without this requirement. We remark however that it can be shown
that ény non-decreasing function can have at most a countable number of
discontinuities, and so from any non-decreasing function we can obtain a

left continuous non-decreasing function by changing its values at most at a

countable number of points.

1.14 Theorem. The function ﬁa is countably additive on P.

Proof. Let’ En = [an, bn) n = i, 2,... be a sequence of disjoint

o
elements of P, and suppose that @ E = E, vhere E = [ao, bo). We
N » o n=1
need to show that pd(E) = ) ua(En), that is, that

n=1
[ o]

alby) - ala)) = ] (a(v) - ala)).
n=1
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. m . ’
We begin by showing that ua(E) > ) ua(En). Now it is sufficient
=1

_ il v
for this to show that ua(E) > ) ua(En) for each finite m. Given any
=1

m, order the intervals En, n=1l,..., m, according to their left end-

point, that is, re~index them so that a; g_ai+l; for all i =1,..., m=-1.

Since the intervals are disjoint, it follows that ‘bi L8 We must show

. m .
that a(bo) - a(ao) > 21 (a(bn) - a(an)). Since clearly by > b, and
4 n-_ . . . ‘
a, < a; for all i, we have a(bo) - a(ao) z_a(bm) - a(al). Now

sl m
J (alv) - ala) =ale) - ale) + ] (ald) - ale,)), an
n=1 n=1 )
m-1 _
(o(b ) = gla_..)) < 0 because of the way we have ordered the disjoint
nE1 n ntl’ "’ —
intervals and because ¢ 1s° non-decreasing. Hence we obtain the

desired inequality.

i o0
Now we need to show that (E) < (E ). Choose ¢ > 0, choose
Ua < Ua n )
n=1

1 1 1
£
b, < by such thet q(bo) Z_a(bo) - 5 » and for each n choose a < a,

1 .
such that a(an) Z_u(an) - e where the ¢ = are positive numbers such

n*tl  (Recall that

(o]
= £ >4 3 =
that nzl €, 5 For exampge we could let €, 1/2

t
1/2n = 1. We will use this fact repeatedly.) We can choose such an

n=1
only because ¢ 1is assumed to be left continuous. Then

1 *® ® 0 : 1
lags byl € g ) = @ e b)) €\ (a), b)), since [ag, by) i
n=1 n=1
compact and the (a;, bn) are open, there exists a finite integer m such
1. m 1 :
that [ag, byl Eﬁkvj (an, bn). Re-index the intervals so that the first

n=1.
contains agys -the second contains the right endpoint of the first, the

third contains the right endpoint of the second and so on until we get
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bé contained in an intervel of the string. There may be some intervals

left over, and we discaerd them as they are superfluous. We see that we

1

n+l for n=1,..., m and

have now arranged matters so that bn > a

1 1
a. < a and b

1 . : *
1 <8y 0 < b_. We also reindex the e, in the same wayi Then

m
) €

a(by) - alay) <ald)) - ala,) +§<alp) -ale) + 5§
(

m- m :
' \ £ _ . ' €
ia(bm) a(al) + Z (oz(bn) - o an+l)) + 3= ) (a(bn)f— ot(an)) + 35
n=1 =1
m . o :
< Z ('oc(bn) ~ala ) +e +35< } lal® ) -ala)) +e. Since e was
n=1 n=1 o
arbitrary we have shown that a(bo) - a(ao) < ) (u(bn) - a(an)) which is

what we needed./

D. Semirings and premeasures

Motivated by the properties of the collection P of the previous

section, we make:

1.15 Definition. A collection P of subsets of a set X is called

a semiring if

1) g e P
2) if E, FEP then ENFEP
m
3) if E, F € P then there exist El,...,Em € P such that E-F = & En.
. ' - n=1

This definitién of semiring is a slight variation of the one first
given by von Neumann. We leave to the reader the trivial verification that
the collection P of the previous section (or of Example 1.10) is a semi-
ring. Another important example of a semiring, which in a sense generalizes

the example P Jjust considered, is the collection of all differences of
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compact subsets of a topological space. This example will be particularly

useful to us when we consider measure theory on locally compact topological

spaces.

1.16 Definition. A non-negative (extended real valued) function y

defined on a semiring P 1is called a premeasure on P if ﬁ is countably

additive on P.

Thus Theorem 1.14 says that the functions My, of that theorém aré pre-
measures. We also remark that every non-negative measure is also a pre-~
measure. In the definition of a premeasure we could also have allowed the
values to be in a Banach space. But we do not know whether the theorems
which we will prove shortly.about extending a premeasure to a measure are

true in the case of Banach space valued premeasures. Certainly our proofs

will use strongly the fact that the values of a premeasure are in R™.

As was the case for measures, it is easily seen that if a premeasure

U, has finite value on at least one set, then p(@) = 0.

The extension theorem which we wish to prove states in part that =
premeasure 1y, on a semiring P can be extended to a meésure on S(P),
the o-ring generated by P. But before beginning the discussion of this
theorem, we need three lemmas concerning premeasureé. In each of the
following lemmas, P is an arbitrary semiringvand u is aﬁ arbi£rary

premeasure on P.

1.17 Lemma. If E, El, E2,..., Em € P then there exist

F, € P, i=1l,..., k such that (((E-El) - E2) - - Em) = F,.
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Proof. We use induction on m. If m=1 then the lemma is true by

the definition of a semiring. Now suppose that the lemma is true for m-1

where m > 1. Then there exist Fi', i=1l,..., k' such that
kl
((((B-E}) - E,) =~ --- - E ) -E)=( g_al F,) - E_. But
kl k'
(& F. ) -E = 45 (F:.'L - E;). Thus, using the definition of a semiring to
i=1 i=1 '

express each F:'L - Em as the disjoint union of & finite number of elements

of P,s we obtain the desired result./
[e+)

1.18 Lemma. If ED & E, vhere E, E; € P, then u (E) > E u
i=1

(As a special case we see that a premeasure is monotone, that is, if ECF,

and E, F € P, then u(E) < u(F))

Proof. We note first that we have not assumed that GB E is in P.

i=1
Now, to prove the lemma it is sufficient to show that u(E) > 2 u(E for
. | }]f
each finite m. By Lemma 1.17, (((E-E,) -E,) - - -E )= & F,,
1 2 n . i
i=1
' k
where F, €P, Then E=E ©E. © ... E © & F.,. Thus
i 1 2 m 1=1 i
_ k
u(®) = u(El) PR (E ) + ) u(F ). Since 1y is non-negative, it
i=1 :

follows that p(E) > z (B, A
=1

1.19 Lemma. A premeasure is countably subadditive, that is, if

(o]
g.\_Jl E, where E, B, €P, then wu(E) g 21 u(E,).

0

: ]
Proof. Clearly E = 1K=j1 (En Ei). Let ENE, = E so that

E = U E; Using Lerma 1.17 repeatedly we obtain
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i : m-1
_ _ 1 1 1 . 1 1 o
E—vEl-El@(Eg—El)GB .03(13—. Ej)éB
i=1 J=1
L B Ky
=E & ® F_.®:---® P F . H... .
1 . 2i ._- mi
i=1 i=
k K-
- _ . 5 '
Therefore, u(E) = p(El) + izl p(in) + ..+ izl p(Fmi) + ,.. . But

kT[l 1 ’ km ) -
i? F; CE CE , saby Lema 1.18, 121 u(Fmi) < u(Em). Thus

wE) < ) ulE) S

i=1

E. The Extension of Premeasures to Outer Measures

In order to extend a premeasure to a measure we first extend the
premeasure to a set function, which is not necessarily a measure, but which
has a very large domain. We then restrict this set function to a smaller

domain in such a way that the restricted function is a measure.

1.20 Definition. If P is any collection of subsets of a set X we

say E C X is countable covered by P if there is a countable collection

. 00
. [ee]
{En}n=l of elements of P such that E EZEZ{ E .

It is easily seen that 1f P is any collection of sets, then the
collection H(P), of all those sets which are countably covered by P is
a g-ring with the additional property that if' E é’H(P) and FCE then

F € H(P).

1.21 Definition. A o-ring H with the property that if E € H and

FCE then F € H 1is called a hereditary g-ring.
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If P is any collection of sets, then H(P) will be called the

hereditary O-ring generated by P.

1.22 Definition. An outer measure is a non-negative (extended real

valued) function, u*, whose domain is a hereditary g-ring H, such that

1) u* is monotone, that is, if E CF, F € H, then JF(E) < u¥(F)

2)4u* is countably subadditive, that is, if E C?\v] E E € H,
n=1
% g
then yp (B) < § w (E ).
= n
n=1

1.23 Theorem. If p is a premeasuré on a semiring P and if U* is

defined on H(P) by

[~ : o
* .
p¥(a) = inf{ § u(E) : A c\ =&, B _€p),
n=1 n=1

then ﬂ* is an outer measure on H(P) which extends U (that is,

u*(E) = u(E) for each E € P).

. Proof. Property 1) in the definition of an outer measure is clearly
satisfied Dby u*. So we need first to prove property 2), that is, that if

A c:\“) A;, vhere each A; € H(P) then p*(a) < Z u (A ). Now if
i=1 i=1

ﬂ*(Ai) = o for some i, then the result is certainly true, and so we may

assume that u*(Ai) < o for every i.

Iet € > 0 be given. Choose {E:LJ}1 3= C P such that
Jny vt
A, C E.. and y (a.) > z 1KE..) - & . Then A Cﬁkv)
1= 1 j=1 oot i,9=1 "3

o

) < 7o owmlE )= ]« zu< )<
i,5=1 21 =

pet~—1 8

=1 2 i=1

() + ) = °z° WFag) + e,
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' Since € was arbitrary it follows that u* is countably subadditive. Thus
u* is an outer measure.

Now we need to show that ﬂ* extends u. Clearly ﬁ*(A) s.ﬁ(A) for

all A € P by the definition of u*, so all that Welneed to show is that

p¥(a) > u(a) if A €P, that is, that Y} ou(E) >u(a) i AC U E.
=1t T TS

and A, Ei € P. But this is just the fact that ‘a premeasure is countably

subadditive./

1.24 Definition. = The outer measure, u*, defined in the statement of

Theorem 1.23 is called the outer measure determined by the premeasure ﬁ.

F. Measures from Outer Measures

Outer measures will in general not be measures. We now begin the

process of restricting the domain of an outer measure so as to obtain a

measure.

1.25 Definition. Given a hereditary o-ring H and an outer

measure u* on H we call a set E € H u*—measurable'if for every A €H

we have the equality u*(A) = u¥(A N E) + ﬁ*(A—E). We will denote the

collection of all p¥-measurable sets by M(ﬁ*).

This ingenious.definition is due to Caratheodory in 1918. It says that
E splits all elements of H nicelj)with respect to ﬁ*. Note that it is
always true that u*(A) < u*(A NE) + p*(A-E) because of the subadditivity
of ﬂ*. Thus to show that a set E :is ﬁ*—measurable we need only prove

the opposite inequality, u¥(A) > p*(A N E) + p*(A-E), for all A € H.
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1.26 Theorem. If -u¥ dis an outer measure on a hereditary o-ring H,

then either M(u¥) is empty, or it is a o-ring and the restriction of p*

to M(p¥) is a measure.
We divide the proof into two main steps.
1.27 Lemma. If M(pu¥*) is not empty, then it is a ring.

Proof. We need to prove that if E, F € M(p*), then EUF and

E-F € M(u¥). Let A € H be arbitrary. Then, using the fact that E and

F are U¥-measurable, we obtain the following two strings of inegualities:

p¥(A) < p#(A N (EUVF)) + p*(h - (EUF))

I

u*((A NE) @ ((A-E) NF)) + p*((A-E) - F)

A

p*(A NE) + p*((A-E) NF) + p*((A-E) - F)

u¥(a)

]
=
E 3
=
D
&
+
=
%
T
=
I

and
u*(4) < p*¥(a N (B-F)) + u*(a - (BE-F))

= y*((A NE) - F) + u*((A-E) U (A N'F))

u*((A NE) - F) + p*((A-E) @ (A NENTF))

<u¥((ANE) - F) + y*(A-E) + u¥*(ANENF)

u%(A NE) + u*(A-E) = p*(A).

Since both strings begin and end with pu¥(A), all inequalities are
actually equalities. Thus the first line of the first string shows that

EUF € Myu*) and the first line of the second string shows that E-F € M(p¥*).

Therefore M(y*) is a ring if it is not empty.
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1.28 Lemma. Either M(up*) is empty, or it is a O-ring, in which case
(o0
E, where E; € M(u¥), then W*(ANE) = I w¥(aNE) for all
: i=1

if E =
i

Lo

A € H.
Proof. We remark first that if E and F are disjoint elements of

M(u*), then , .
wA N (E@F)) = p*(A NE) + 1 *(ANTF),

for this is easily seen to be the same as the statement that E splits the

set AN (E®F) nicely with respect to yp¥.

Now to prove that M(p*) is a g-ring we only need to show that M(u*)

(o]
is closed under formation of countable unions. Suppose that E = \,) Ei’
. i=1

vhere each E, € M(y¥). We wish to show that E €M(y*). Now we can

assume‘ﬁhat the E.'s are disjoint, since if they are not, we can disjointize
k-1 '
. 1 -
them by letting Eé = Ek - &v{ E;. Clearly each Ey € M(U*)’ since
1:

M(u¥) 1is a ring.
Let A € H. Then we have
n n
— -— : * ) "l
u*(a) = p*an (iﬁz E,)) + p*(a (iﬁz Ei)) since M(y¥*) is a ring

m , : _
> u¥Aan (.63 Ei)) +1*¥(A-E) Dby monotonicity of ¥
i=

ul
= J u*@Aan Ei) + u*(A-E) by lemma 1.
i=1

Since this holds for every finite m and since & (AN Ei) =ANE we
i=1l

thus have p¥(A) > ] w¥(ANE;) +u*(A-E) » W (AN E) + u¥(A-E) since
i=1

¥ is subadditive. bThus E is p¥-measurable, and consequently M(u*) is

g8 O-ring if it is not empty.
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To prove the second part of the lemma WeAnofe that we can also conclude

o0
from the above that u¥(A) = ] W#(A NE;) + u*(A-E). Then if we replace A
i=1 i &
by ANE we obtain p*¥(A NE) = Y ouE(a F\Ei) + u*(g) = z u* (A r‘Ei) as
i=1 : i=1
desired, where we have used the fact that if M(u*) is not empty then some set

splits @ nicely, so that either u*(@) = 0 or else u*(E) = o for all E € H.

To conclude the proof of Theoren 1.26 all that we need to show is that

(o]
p¥ restricted to M(pu*) is a measure, that is, that if E = & Ei’ with
oo . i=l
each E; M(u¥*), then W¥(E) = ) w*(E;). But to cbtain this we need only

i=1l )
let A = E in the second statement of Lemma 1.28./

We remark that it is entirely possible for M(p¥) to be empty (see

exercise 4).

1.29 Defintion. A non-negative measure | on a o-ring S is complete if

whenever F CE, E €S, and u(E) = 0, then F ¢ S8. (And, of course, u(F) = 0.)

1.30 Provosition. If p¥ is an outer measure, if M(u¥) # ¢, and if E

is the'restriction of u* to M(u*), then u 1is a complete measure.

Proof. It is sufficient to show that if u¥(E) = 0 then E € M(u¥). Let
A € H. Then clearly u*(A) > p¥(A NE) + u¥*(A-E), since u*(A) > p*(A-E)

and p¥(ANE) = 0 by the monotonicity‘of u*. Therefore E € M(u¥)./

At this point we do not yet know that we have proved a really useful
theorem. For example, we do not know whether M(u¥*) is ever non-empty. Also,

we do not have an extension theorem yet. We solve these problems with the

following theorem.

1.31 Theorem. If u is a premeasure on a semiring P, and if p¥,

defined on H(P), is the outer measure which W determines, then P C M(u¥).
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Proof. We need to show that if E € P, then E € M(u*), that is, that
for a1l A € H(P), p*(A) = u*(A N E) + p#(A-E). If u¥(a) = then we are
clearly done since it is then clear that u*(A) > u¥(A NE) + ﬁ*(A—E). Thus
we may assume that ﬁ*(A) < w, Suppose e are givén ¢ > 0. Then, since

A € H(P), we can choose elements T, of P 'such that A Ci\v/ F, and

=1
.. w .
u*(A) + e > ) u(Fi). Now F, = (EN Fi) & (Fi-E), so by the d}e{finition
i=1 i
of a semiring there exist Gij € P, such that F; = (EN Fy ) B D G, i3
Jj=1
Then
oo o kj_
) u(Fi)= ) WEATF)+ ) u( ))
i=1 '=l J= l .
[+o]
= z u(EﬁF ) + Z 2 U
i=1 i=1l j=1
) . Lo © kj_
Now we note that ANEC\_J (F, NE) and that A-EC U (r-2) =\ U6,
i=1 i=1 iop =1 U
Thus
o o © k .
pr(a) +e> § ou(F) = § u(F, NE)+ Z ule;,) > p¥(A N E) + p*(A-E).
i=1 i=1 i=1 j=1

Since ¢ is arbitrary, we obtain the desired result.
As a corollary of the above results we obtain:

1.32 The Extension‘Theorem.' If y 1is a premeasure on a semiring P

and if yp¥, defined on H(P), is the outer measure determined by u, then
1) if 7 is the restriction of u* to S(P), then L is a measure which
extends y. 2) if .a' is the restriction of p* +to M(u*), then y is a

complete measure which extends p and so ﬁ.

© 133 Definition. If P, a and ﬁa are as in 1.13, then ﬁu is

called the Stieltjes-Borel measure on R corresponding to arecall that S(P)
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is the g-ring of Borel sets of R), and ;& is called the Stieltjes-

Lebesgue measure on R corresponding to a. If o(X) =X, then n
o

is called Borel measure on R, 1y 1s called Lebesgue measure on R, and-
o

M(,*) is called the g-ring of Lebesgue measurable subsets of R.
a .

Implicit in thé wording of thé last paragraph is thé fact that, given «,
the corresponding ﬁa and a& are unique. We have th.yet proved anything
like this, but the uniqueness of extensions is.the subject of the next
section, and uniqueness of Stiéltjes-Borel and Stieltjes-Lebesgue measure

will follow from the results obtained there.

G. Unigueness of Extensions.

Before going on to prove uniqueness we first show that we cannot extend
a premeasure |, 10 a measure on a larger O-ring than M(u*) by iterating

the process described above.

1.34 Proposition. Let Y be a premeasure on a semiring P and let

u* be the outer measure determined by u. Then H(P) = H(M(u*)), and the
outer measures determined by 1 and U are both just u¥. More precisely,

if B € H(P), then u*(E) = inf{fi(F) : ECPF, F € 8(P)} = inf{U(F) : ECF, FeMpu#)

Proof. H(P) = H(M(u*)) because P C M(u*) C H(P). To prove the second

statement it suffices to show that for each E € H(P) the following string

of inequalities holds:

-] . : -]
w(g) > inf{ § n(B;) : Eg__U E., E; €FP}
i=1 i=1

> inf{{i(F) : ECF, F € s(P)}

> inf{U(F) : ECF, F € Mu¥)}

> uH(E).
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'Now the first inequality follows from the definition of u¥*. The second
[+0]

inequality follows from the fact that if F = Kv) E, where the E, € P,
=1t *
. © . " - N .
then u(F) < ) u(Ei) by the countable- subadditivity of u¥. The third
i=1 : '

inequality holds because the term on the right is the infimum of a larger

set. Finally, the last inequality follows from the monotonicity of .ﬁ¥.

1.35 Corollary. If E € H(P), then there exists F € S(P) such that

ECTF and p(F) = p*(E).

Proof. By Proposition 1.3k there must exist a seguence {Fi}:=l of

elements of S(P) such that E CF, for each i and lim ﬁ(Fi) = y¥*(E).

130

Let F =/ \F../
i=1 t

In order to prove that the extensions we have obtained are unique we

need to make an additional hypothesis (see Exercise 12).

1.36 Definition. Let u be a non-negative set function (such as a

premeasure, measure, or outer measure) defined on a collection P, of

subsets of X. Then ECX is said to be g-finite for y if there exist
[e e}

Ei € P such that u(Ei) < o for each i, and E g;\v) E;. If each

i=l _
E € P is g-finite, then y itself is said to be g-finite. If in fact X

is g-finite, then p is said to be totally g-finite.

Being o-finite will be an important hypothesis in many theorems in
addition to the theorem concerning the uniqueness of extensions. Many

pathologies occur with measures that are not g-finite.
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1.37 Proposition. _If p  is a g-finite premeasure then u¥* is

o-finite, so, in particular, ﬁ and ﬁ' are g-finite.
Proof. Obvious.

1.38 Theorem. (Uniqueness of extensions) If u is a g-finite

premeasure on a semiring P, if S 1is a g-ring such that S(P) C 8 C M(p¥)
and if Vv 1is a non-negative extension of ﬁ to a measure on S, then
coincides with the restriction of ﬁ* to S.

o
Proof. If E€ S and EC\_JE, vhere each E € P, then

i=1
(<] [<<]

vE) < ) v(Ei) = 3 ﬁ(Ei) by the countable subadditivity of non-negative
‘ i=1 i=1 '

measures and by the fact that v extends ﬁ. Thus y(E) < u*(E) for all

E € S. Thus we need to show that u#(E) < v(E) for all E € S.

Case 1. Suppose first that E is such that there exists ¥ € P for

vhich ECF and u(F) < o. Then, since F = E ® (F-E), we have
v(F) = u(F) = u%(F) = u*(E) + u%(F—E) > v(E) + v(F-E) = y(F). Thus
u*(E) + p*(F-E) = v(E) + v(F-E). But p*(E) 2 v(E) and  y*(F-E) _>_\)(F—-E),

and these quantities are all assumed to be finite, so we must have

u*(E) = v(E).

Case 2. Suppose now that E € S is arbitrary. Then, since u is
assumed to be g-finite, there exist Fi € P such that u(Fi) < « for each

o0
i and E g;\y} Fi; Using the usual disjointizing process, we can then

i=1 o
obtain sets G; in S(P) such that ﬁ(Gi) < o for each i and
EC ® G,. Then, using Case 1, we see that v(E) = § Vv(EN Gi)
i=1 : ' i=1

= 020 u*(E N Gi) = u*(E).//
i=1 .
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1.39 Corollary. Any non-negative measure p defined_on the Bored

subsets of the real line which is finite on finite intervals (and so is

o-finite) is ﬁd for some monotone non-decreasing left continuous

function o.

Proof. Define o by olt) =u([0,t)) if t >0 and
alt) = —Q([t,o)) if t < 0. Then o is clearly non—éecreasing, and it is
easily seen, using the countable additivity of u, fhat o 1is left
continuous. Clearly ﬁd agrees with yu on the family of left closed,
right open finite intervals, and so ﬁa agrees with p on the class of

Borel sets, by the theorem concerning the unigueness of extensions./

We will now examine the structure of M(p?) more closely and show
that if p¥* is determined by a g-finite premeasure, then M(p*) has a

rather simple form.

1.40 Definition. Let u be a non-negative measure on a g-ring S.

A subset E of X is called a null set with respect to y . if there
exists F € S such that ECTF and u(F) =0 (or equivalently, if

u*(E) = 0). The null sets form a hereditary g-ring which we will denote

by N(u).
Our first result does not involve g-finiteness.

1.41 Proposition. Let y be a non-negative measure on a g-ring S.

Let S@®N(U) ={E®F : E€ S, F € N(u)} and define fI on S®N(u) by




- 1.23 -

fi(E®F) = u(E) where EE€S and F €N(u). Then S ®N(u) is a o-ring,
ﬁ is well defined and ﬁ is a completion of ﬁ, that is, ﬁ is an

extension of u to a complete measure.

Proof. We leave to the reader the trivial proof that S © I\T(ﬁ) is a
g-ring. The only slightly non-trivial thing to prove is that (i is well

defined. Let B, ®F =E, ®F,, vhere E, E, €5 and F,, F, € N(y)-

Then we must show that u(El) = U(E2)° But E-E, =B NF,CF, and
E,-E, =E,NF, CF, andso u(E-E,) = u(E,-E;) = 0. ‘Since u(E;)
= (B NE,) + pu(E,~E;) and u(E,) = u(B; NEY) + p(E,-E ), it follows

that u(E) = u(E).

1.42 Theorem. If y is a g-finite non-negative measure on a o-ring

S, then M(y¥*) =8 ® N(y).

Proof. Clearly S ®N(y) C M(y*). Thus we must show that

M(u*) € 5 ®N(y).

Case 1. Suppose first that E € M(y*) is such that p*(E) < w. By
Corollary 1.35 there exists F € 5 such that ECTF and u(F) = y*(E).
Then p(F) = u*(E) + y*(F-E) so p*(F-E) = y(F) - y*(E) = 0. Using the
corollary again, we see that there exists G € 5 suéh that F-EC G and
u(G) = 0. Since: F-EC G, we have E-G = F-G, and so
E=(EG)@®(ENG) = (F-G) ®(ENG). But F-G €S and ENG EN(),

and so E € S @N(ﬁ).

Case 2. Suppose now that E € M(ﬁ*) is arbitrary. Since y is

assumed to be g-finite, so is u¥*, and so there exist sets Ei € M(U*)
' ©

. ~ o0
such that u*(E,) <= for each i eand E=\_JE. (Toget E= \_ &,
. i=1 . i=1l
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rather then E g;\“} Ei we can take intersections with E if necessary.)
i=l
By Case 1, E; € s ®N(y) for each i. Since S ®N(y) is a g-ring, it

follows that E € S @ N(u)./

1.43 Corollary. If u is a g-Tinite premeasure on a semiring P,

then M(u*) = s(P) ® W(n).

Since Lebesgue measure is the most important éxample of a measure,
it is of interest to know whether theré exiét subsets of the real line
which are not Lebesgue measurable. It is not very difficult to construct
such sets, and we suggest such a construction in Exgrcise 14 at the end of
this chapter. However, an interesting feature of all known examples
(including that of Exercise 1) is that they seem to require the use of
the axiom of choice. In fact, R. Solovay has recently shown that there
exist models for the Zermelo~-Frankel axioms 6f set theory other than the
uncountable axiom of choice, such that, in these modelg,it is true that
every subset of the real line is Lebesgue measurable.

It is also of interest to know that the Borel subsets of the real’
line form a proper subset of the class of all Lebesgue measurable subsetls

of the real line. For this fact, see problem 10 at the end of this

chapter.

Exercises.

1. Let X ©be the set of positive integers and let S %be the family of
all subsets of X. Determine which of the following are measures on

S (not all of them are).

a) U haé values in Rm, and, for each E € S, u(E) is the:-sequence
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whose nth term is 1/n if n € E and 0 if n ¢ E.

b) ¥ has values in 2°  and, for cach E € S, ﬁ(E) is the sequence
vhose nth term is 1 if n € E and O if n ¢ E.

e) y is defined as in b) but its values are viewéd,as being elements

of the Banach space of sequences a such that ) [anl/n2 < o, In
o n=1
this space, Mlal = ¥ ]anl/ng.
n=1
d) p has values in 21 and, for each E € S, u(E) is the sequence

2
n

vhose nth term is L if n €E and 0 if n ¢ E.
et T be a collection of sets which is closed under taking finite
unions and intersections. Show that the collection of sets of the form
E-F vwhere E, F € T forms a semiring. Many interesting semirings
arise in this way. For example, this shows that the collection of
differences of compact subsets (or of open subsets) of a topological

space forms a semiring. Show that the semiring of left-closed right-

open intervals of the real line also arises in this way.

In showing that the set function 1&& defined on the left closed rigﬁt
open intervals of R in terms of a non-decreasing function o is
countably additive, we had to use a compactness argumenf and so the
completeness of R, and we had to assume that o is left continuous.
a) Show that if ofx) = x, but that R is replaced by Q, the
rational ngmbers, then the corresponding function, ua, defined on
the léft clésed right open subsets of @, is not countably additive.

b) Show that if d is not left continuous then ﬁa is not countably

additive.
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Let X De a set and let S Dbe the‘family of all subsets of X.

Define u¥ on S by u*(E) =1 for all E € S. Show that

p¥ is an outer measure, and determine its measurable sets.

A measure ﬁ is called continucus if ﬁ({x}) = 0 for every point x.
If ﬁd is a Borel-Stieltjes measure, show that ﬁa is a continuous

measure if and only if o 1s a continuous function.

If ﬁ is a measure on a g-ring S, then E € § is.called an atom

for y if u(E) # 0 and for any F CE, u(F) = u(E) or u(F) = 0.

a) If ﬁa is a Borel-Stieltjes measure, determine its atoms in terms
of a.

b) A measure is called purely atomic if every measurable set of non-

zero measure is a union of atoms. Determine which ﬁa are purely
atomic in terms of «.
e¢) If o is such that ﬁa is purely atomic, determine the measurable

sets for ﬁa (that is, for the corresponding outer measure).

Unfortunately atoms need not be associated with points as above. Let
X Ybe an uncountable set and let S be the collection of subsets of X
which are either countable or whose complement is cquntable. Show that
S is a g-field. Define p on S by u(E) = 0 if .X is countable
and p(E) =1 if E is uncountable. Show that p is a measure, and

find its atoms.

A measure is called purely non-atomic if it has no atoms. Prove that

if ﬁ is a purely non-atomic non-negative measure on a g-ring 8, if
E €S, and if c¢ is any constant such that 0 < c g_ﬁ(E),' then there

exists an F € S such that FCE and p(F) = c.
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Prove that the cardinality of the collection of Borel subsets of the
real line is equal to the cardinality of the real line, so that not

every subset of the real line can be a Borel subset. Hint: let P be
the collection of open intervals, let " be the collection of countable
unions of elements of P, let P"C ‘be the union of P with the
complements of elements of P, let P be countable unions of
elements of Puc’ etc. Show that each collection of sets so obtained

has the cardinality of the real line, and that the union of this

sequence of collections is the g-ring of Borel sets.

The Cantor set. Expand every number x in the closed unit interval

X = [0, 1] in the ternary system, that is, if x € X, write
X = —g-, with each o, =0, }, or 2, and let C be the set of
.n=1 3 :

all those numbers x in whose expansion the digit 1 1is not needed.

(Observe that if, motivated by the customary decimal notation, we write

©
4.0, ... for Y -2, then for instance z = .1000 ... = .0222 ...,
172 n 3
n=1 3
and therefore % € C, bdbut that since % = ,111 ... and since this is

the only ternary expansion of % s therefore % ¢ C.) The set C is
called the Cantor set. Let Xl be the open middle third of X,

xi = (% s %); let X, and x3 be the open middle thirds of the two

closed intervals vhich make up X-X,, that is X, = (é, g) and X3 =
7 8,. . . :

(§, §), let X%’ XS’ X6 and X7 be the open middle thirds of the
four closed intervals which make up X - (Xl €9X2 Q)X3), and so on.

Prove the following statements.

(o]
a) =X~ & Xn.
el
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b) If ﬁ is Lebesque measure on R theﬁ u(C) = O;

c¢) The cardinality of C is thé same as the cardinality of the real
line.

a) Concludé that thé cardinality of the collection of Lebésgue
méasurablé séts is 2° wheré c is.the cérdinality of the real
line. 1In view of éxercisé 9 this shows that there exist Lebesgue

measurable sets which are not Borel sets,

An outer measure ﬁ* is called regular (an overused word) if for any

A €H (its domain) there is a p¥-measursble set E such that E D A
and p¥(E) = w*(A). We have seen (Corollary 1.35) that any outer
measure induced by a premeasure is regular. Show that.if p¥* is
regular, if A € H and if p* is finitely additive on S(M(p¥*) U {A}),
then A € M(ﬁ*). Thus M(u¥) is the.largest o-ring on which y* is
é.measure (although the restriction of u* to M(pu*) can sometimes be

extended to be a measure on larger ¢g-rings in other ways).

Let P Dbe the semiring of ieft closed right open intervals of Q, the
rational numﬁers, and let p be defined on P by u(g) = 0, and

p(E) =w if E€P, E# @#. Show that y is a premeasure which has
many different extensions to a measure on S(P). Thus some hypothesis

such as g-finiteness is needed to prove uniqueness of extensions.

If E and F are sets, then their symmetric difference, denoted by
EAF, is defined to be (E-F) U (F-E). If R is a ring of sets,

show that, with A as addition and N as multiplication, R Dbecomes

a ring in thé usﬁal algebraic sénsé. If R is a g-ring and g is a
non-negative measure on R, show that the null sets of p vwhich are in

R form an ideal in R.
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Let Y %be Lebesgue measure on the real line, and let ¥ be the

corresponding outer measure.

a) Show that | and u¥* are translation invariant, that is, if

ECR and r € R, and if r+E = {r+x : x € E}, then
u*(r+E) = u*(E), and similarly for u. (You must check the

translation invariance of the domain of yu.)

b) Let G = [0, 1) and define an addition, %, on G as follows

(this is addition‘modulo 1): if f, s € G, then r¥s = r+s

if r+s < 1, and r¥s = r+s-1 it res > 1. Show that G is a
group under :. (In fact the function r » exp(2mir) ‘is an
isomorphism of the group G onto the multiplicative group of
complex numbers of modulus 1). Show that the restrictions of

and P* to G are "translation" invariant with respect to +.

¢) Show that there is a subset of [0, 1) which is not Lebesgue

measurable, as follows. Let G denote the subset of G consist-

Q
ing of the rational numbers in G‘, Then GQ is a subgroup of
G. Using the axiom of choice, pick one element from each coset
of GQ in G, and let E be the set consisting of all these

elements, that is, E 1is a set of coset representatives for GQ'

Show that E cannot be Lebesgué measurable.




