Fields of C^*-algebras. Anytime the center of a C^*-algebra (i.e. the set of its elements which commute with all the elements of the algebra) is more than one-dimensional and acts non-degenerately on the algebra, the C^*-algebra can be decomposed as a field of C^*-algebras over the maximal ideal space of the center (or of any non-degenerate C^*-subalgebra of the center). For simplicity we deal here with unital algebras, but all of this works without difficulty in general. So let A be a C^*-algebra with 1, and let C be a C^*-subalgebra of the center of A with $1 \in C$. Let $C = C(X)$, and for $x \in X$ let J_x be the ideal of functions vanishing at x. Let $I_x = AJ_x$ (closure of linear span), an ideal in A. Let $A_x = A/I_x$ (“localization”), so that $\{A_x\}_{x \in X}$ is a “field” of C^*-algebras over X. For $a \in A$ let a_x be its image in A_x.

1) Prove that for any $a \in A$ the function $x \mapsto \|a_x\|_{A_x}$ is upper-semi-continuous. (So $\{A_x\}$ is said to be an upper-semi-continuous field.)

2) If $x \mapsto \|a_x\|_{A_x}$ is continuous for all $a \in A$, then the field is said to be continuous. For this part assume that A is commutative. Note that then one gets a continuous surjection from \hat{A} onto \hat{C}. Find examples of A’s and C’s for which $x \mapsto \|a_x\|$ is not continuous. In fact, find an attractive characterization of exactly when the field is continuous, in terms of the surjection from \hat{A} onto \hat{C} and concepts that you have probably met in the past. (It can be shown that an analogous characterization works in the non-commutative case, using the primitive ideal space, see part 4 below, of A.) Hint: Try various examples involving compact subsets of the plane and their projections to the x-axis.

3) Consider the C^*-algebras

$$A_1 = \{f : [0, 1] \to M_2 \text{ continuous, with } f(1) = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \}$$

$$A_2 = \{f : [0, 1] \to M_2 \text{ continuous, with } f(1) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \},$$

and let $C = \text{center}(A)$ in each cases. Are the corresponding fields continuous? Are all the fiber algebras A_x isomorphic? Show that A_1 and A_2 are not isomorphic. The above A_1 and A_2 are very simple prototypes of behavior that occurs often “in nature”, but with higher-dimensional algebras, and more complicated boundary behavior.

4. Show that the following C^*-algebras are isomorphic:

1. The universal unital C^*-algebra generated by two (self-adjoint) projections.

2. The universal C^*-algebra generated by two self-adjoint unitary elements.

3. The group algebra $C^*(G)$ for $G = \mathbb{Z}_2 * \mathbb{Z}_2$, the free product of two copies of the 2-element group.
4. The crossed-product algebra $A \times_\alpha G$ where $A = C(T)$ for T the unit circle in the complex plane, $G = \mathbb{Z}_2$, and α is the action of taking complex conjugation. (So T/α exhibits the unit interval as an “orbifold”, i.e. the orbit-space for the action of a finite group on a manifold, and $A \times_\alpha G$ remembers where the orbifold comes from.) Hint: In $\mathbb{Z}_2 \rtimes \mathbb{Z}_2$ find a copy of \mathbb{Z}.

5. Determine the primitive ideal space of the above C*-algebra, with its topology.

6. Use the center of the algebra above to express the algebra as a continuous field of C*-algebras.

7. Use problem 6 to prove that if p and q are two projections in a unital C*-algebra such that $\|p - q\| < 1$, then they are unitarily equivalent, that is, there is a unitary element u in the algebra (in fact in the unital subalgebra generated by p and q) such that $upu^* = q$.

8. Use problem 7 to show that in a unital separable C*-algebra the set of unitary equivalence classes of projections is countable.