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We consider Serre-type representations of G = Gal(Q/Q).
They will always be 2-dimensional, continuous and odd (in the
sense that det (p(complex conjugation)) = —1). They will
usually be irreducible.

In this talk, the representations are p when they take values in
GL(2) of a finite field (or the algebraic closure of a finite field)
and g when they are p-adic (or ¢-adic or P-adic...)
representations. In proving the conjecture, the mod p
representations are the primary objects.

For each prime ¢, we fix one « : Q — Q,. This allows us to refer
to A-adic representations as “/-adic representations.”
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Modularity

A mod p representation is deemed modular if it is either
reducible or associated with a cusp form > a,q" (in the sense
that tr p(Frob,) = a, for almost all primes ¢).

A p-adic representation g is modular if it associated with a
modular form. Our p-adic representations will always be
irreducible.
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The aim is to prove the modularity of mod p 2-dimensional
irreducible representations of G that are unramified away

from p. Serre’s conjecture predicts that a given p arises from a
cusp form on SL(2,Z) of a certain weight k(p) > 2.

This invariant is an even integer that is computed from the
restriction of p to the inertia group of G at p. For p > 2, we have
2 < k(p) < p? — 1, but we can and always do twist p by a
suitable power of the mod p cyclotomic character to ensure

2<k(p)<p+1.
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As we learned this morning, Khare—Wintenberger lift p to a pp
and then insert the representation g, into a compatible system
of ¢-adic representations (gy) that reflect properties of the
modular form(s) f whose existence we wish to establish.

Conjecturally, we have

p»ifH(ﬁg),

but Khare—Wintenberger build p — (5,) unconditionally. We use
the plural “forms” because it seems essential to use alternative
kinds of modular forms (notably weight 2 with level > 1 as well
as weight k(p) of level 1).

In the simplest construction, Khare—Wintenberger build a
system (,) that looks as if it comes from a form of weight
k = k(p) and level 1. In particular, for each prime ¢, gy is
unramified away from ¢. Locally at ¢, it is crystalline with
Hodge—Tate weights 0, k — 1.
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We also bring to the table the theorems of modularity lifting that
were discussed this morning. Using the results of

Skinner—Wiles and Kisin, we infer that a given representation g
with ¢ = 2 is modular if its reduction p, is modular and ¢ satisfies

k<?(+1.

Of course, once a specific g, is modular, the whole family of
compatible representations is modular; in particular, p will be
modular.

An important corollary of this observation is that Serre’s
conjecture modulo a prime ¢ implies Serre’s conjecture for all
primes p < {. Indeed, if p < ¢, then we always have

k < p-+1</+1; meanwhile, if Serre’s conjecture is true
mod ¢, then p, is known to be modular.
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In particular, it suffices to prove Serre’s conjecture for an infinite
set of primes!
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In most of this discussion we consider only representations that
are unramified away from the residue characteristic. (This is the
definition of the ‘level one case.”)

However, in the proof it is necessary to consider some mod p
representations that are ramified also at a second prime P.
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The strategy of the Khare—Wintenberger proof is to begin with a
small set of base cases and then to prove Serre’s conjecture
mod P (for some P > p) on the assumption that it’s true mod p.

The proof begins with the base cases p =2, p = 3. In the
1970s, Tate showed that all representations p : G — GL(2,F»)
are reducible by using Odlyzko’s discriminant bounds. Soon
after, Serre adapted Tate’s method to treat the case p = 3 in an
analogous way.
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The next case is p = 5. Here, the weight of p can take only the
three values 2, 4, 6. The first two of these are covered by the
inequality k < 3 + 1 and the fact that the conjecture is known
mod 3. We have to worry only about kK = 6.

If p (unramified outside 5) really came from a modular form of
weight 6 on SL(2, Z), it would come alternatively from a

weight 2 form on 'y(5) and would thus arise from the group of
5-division points of the abelian variety Jy(5)—which happens to
be 0. While it is not possible to use this information directly, we
know from Taylor’s work that each mod 5 Serre-type
representation that's unramified away from 5 can be seen on
the 5-division points of some semistable abelian variety over Q
with good reduction outside 5. According to Brumer—Kramer
and Schoof, il n’y en a pas.
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Now consider p = 7. (There is no formal need to consider this
case separately, but we can use this case to illustrate the
general argument.) Here again, there is a single problematic
case, k = 8 = p + 1; the other possible weights are no greater
than 5 + 1. Here, for the first time, we use the philosophy of
reduction to weight 2.

The representation p, supposed to have weight 8, should arise
from a weight 2 cusp form f on '4(7) with trivial character. Why
we can'’t yet produce the form, we can make the associated
“weight two” system of ¢-adic representations (5,). These are
semistable at 7 and crystalline at ¢ (if ¢/ # 7) of Hodge—Tate
weights 0, 1 (i.e., they’re Barsotti—Tate).

Kenneth A. Ribet Level One



Let w be the Teichmdller character character of order 6 and
conductor 7. It is worth emphasizing that w normally takes
values in Z3 but can be viewed as taking values in @" (because
of 17) and then in each Q, (via ;). We will take ¢ = 3: the
square of w is a character of order 3, and thus trivial mod 3.

If we knew that f existed, we could apply a proposition
of Carayol to deduce that there is a form ' of weight 2 on I'¢(7)
with character w? such that f and f’ are congruent mod 3.

Strictly speaking, we’d need to knew that p3 does not have
dihedral image. But if it does, then it's unramified at 7, and we
can deduce that it's modular by induction. Then g3 is modular,
SO j7 is modular, so p = p7 is modular. Remarks like these
need to be made at many places in Khare—Wintenberger.
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Since we don’t know that f exists, we work directly with the
representations. We can construct a system (5,) that has the
look and feel of a system coming from the “shadow form” f’. For
example, p5 ~ p3, but each g, acquires “everywhere good
reduction” over the real subfield of Q(17).

The representation p% has nothing whatsoever to do with

p = p7. For example, its determinant is w® (as opposed to w'
for p). An analysis shows that either p% has solvable image (so
is easily proved to be modular) or has weight < 8 after suitable
twisting by powers of the cyclotomic character. In this latter
case, p4 is again modular, this time by induction. Thus the
whole system (5;) is modular; in particular, pf ~ p3 is modular.
It follows by modularity lifting again that () is modular and
then finally that p is modular.
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“An analysis shows that either p’ has solvable image (so is
easily proved to be modular) or has weight < 8 after suitable
twisting by powers of the cyclotomic character.”

To do this analysis, one has to apply results of a host of people,
especially Takeshi Saito (“Hilbert modular forms and p-adic
Hodge theory”). However, it is easy enough to explain why the
indicated result should be true: pf is trying to arise from a
weight 2 level-7 form with character w?. We get such forms
mod 7 from forms of weight 4 on SL(2,Z) and also by using
forms of weight 6 on SL(2,Z) to make weight 2 forms of level 7
and character w*, then twisting the weight 2 forms by w=* to get
a conjugate form with character w*w =24 = w=*% = w?. Mod 7
eigenforms of weight 2, level 7 and character w? arise either
from one construction or the other.
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As already mentioned, moving from 5 to 7 serves to illustrate
what we need to do in the general induction step. Recall that
the aim is to prove the level-one case of Serre’s conjecture for
an infinite set of primes. We assume that it is true for a prime
p > 5 and show that it is true for a prime P > p. Relative to the
argument just given, we will make the substitutions

@ 5+ p,
@7~ P,
°3gq,
where q is a suitable odd prime dividing P — 1.

The fact that there is some odd prime dividing P — 1 implies
that P is not a Fermat prime!

The meaning of “suitable” is that certain refined inequalities
need to be satisfied. These inequalities imply the coarser
bound P < 2p — 1. Thus we are going to visit the world of
Bertrand’s postulate.

Kenneth A. Ribet Level One



The statement is that for each p > 5, thereisa P > p and an
odd prime g|(P — 1) with the following property. Suppose that
g’ divides P — 1 exactly (r > 1) and write ¢" =2m+ 1. Then

we have
P<2m+1 m 1

< (*)

p~ m+1 m+1 p

In particular, P is a bit smaller than 2p.
Letn=(P—1)/(2m+1). ltis clear that for each integer a,
there is an integer i congruent to a mod nin the interval

[mn, (m+ 1)n]. On the other hand, (*) implies that if / lies in this
interval, thenbothi+2and P+ 1 —jare < p+1.
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Assume now that we know Serre’s conjecture mod p, and let P
be as “above” (i.e., as just discussed). Let p be an irreducible
Serre-type representation mod P, twisted so as to have weight
k< P+1.Incase k < p-+1, pis modular by the induction
hypothesis. Similarly, if p has small image, we can prove
directly that it is modular.

If p is supersingular in the sense that it remains irreducible after
restriction to a decomposition group of G at P, then one checks
from the definition of the Serre weight that a suitable twist of p
has weight P 4+ 3 — k. We can and do assume k > p+2; then it
follows from the inequality P < 2p—1thatP+3 -k <p+1,
and we can conclude in this case as well that p is modular.
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The hard case is the remaining “ordinary” case. Here, we use
the same philosophy that we used for the weight 8 case mod 7
(which is automatically ordinary).

Namely, we insert p into a system (5,) that appears to come
from a form of weight 2 on I'{(P) with character wk=2 where w
is now the mod P Teichmdiller character, which has order P — 1.
We view this system as arising from a shadow form f of

weight 2 and conductor P.

We examine the reduction of f mod g, which means literally that
we look at the representation p; mod g. It has the right to be
ramified at P and at q. Its Serre weight is 2. If for some reason
we already know that it is modular (e.g., because it happens
not to be ramified at P), then we conclude as usual by
modularity lifting and moving back to residue characteristic P.
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In the most generic case, we don’t have a clue about the
modularity of pj,. We write w2 = 6w', where 6 is a character of
g-power order and i lies in the short interval that we considered
before. (Thus i is roughly P/2.) Note that 8 = 1 mod q. If the
form f were in our possession, we could use a well known
lemma of H. Carayol to show that f is congruent mod g to a
form ' of weight 2 on I'y(P) whose character is w'.

We work with what we have—Galois representations. We insert
pq into a system (7)) that appears to come from a form like f'.
We examine plp.

As in the case where P =7, k = 8, there are two possible
minimal weights for p), after twisting: k' = i+ 2 and
P+1—i= P+ 3 - Kk'. We have to know that they are both
< p+ 1, but we do!
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Conclusion

We find that p/s is modular. By lifting, (5;) is modular. Hence
Pg = pq is modular. Hence () is modular, and finally p = pp is
modular.

This is a real tour de force!
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