Professor K. A. Ribet

Assignment due October 6, 2011

Let p be an odd prime, and let a be a non-zero square in $\mathbf{Z} / p \mathbf{Z}$. The number of $t \in \mathbf{Z} / p \mathbf{Z}$ such that $t^{2}-a=0$ is then 2 . How many $t \in \mathbf{Z} / p \mathbf{Z}$ have the property that $t^{2}-a$ is a non-zero square? Exploit Problem 10 of $\S 2.2$ to find the answer! Next, by subtraction, find the number of $t \in \mathbf{Z} / p \mathbf{Z}$ such that $t^{2}-a$ is a non-square (i.e., is not square).

Finally, evaluate the sum $\sum_{t \in \mathbf{Z} / p \mathbf{Z}}\left(\frac{t^{2}-a}{p}\right)$, where $\left(\frac{b}{p}\right)$ is the Legendre (or Kronecker) symbol that is defined as follows:

$$
\left(\frac{b}{p}\right)=\left\{\begin{aligned}
0 & \text { if } b=0 \bmod p \\
+1 & \text { if } b \text { is a (non-zero) square } \bmod p, \\
-1 & \text { if } b \text { is a non-square } \bmod p .
\end{aligned}\right.
$$

You can check your answer with sage by typing "sum([kronecker (t^2-1,p) for t in ($0, \ldots, \mathrm{p}-1$)])" for several values of p.

Problems from the Book:

§2.4, problems 14a, 14b, 15, 16
§2.5, problems 1, 4
§2.6, problem 3

