Professor K. A. Ribet

Assignment due November 22, 2011

1. Suppose that $\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle$ is the simple continued fraction representation of a rational number. (Recall that our conventions dictate that a_{n} be at least 2.) Define the numbers h_{n} and k_{n} as usual. Establish the formula

$$
\frac{k_{n}}{k_{n-1}}=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle
$$

(Hint: it seems helpful to recall the recursive formula that defines k_{i} in terms of a_{i} and previous $k \mathrm{~s}$.)

This seems to go easily by induction. If $n=1$, the formula is correct because $\left\langle a_{1}\right\rangle=a_{1}$ and because $k_{0}=1, k_{1}=a_{1}$. Assume that n is at least 2 and that the result is true with $n-1$ in place of n. We have

$$
\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle=a_{n}+\frac{1}{\left\langle a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle}=a_{n}+\frac{k_{n-2}}{k_{n-1}}=\frac{k_{n}}{k_{n-1}}
$$

where the last step comes from the recursive formula alluded to by the statement of the problem.
2. Suppose that p is an odd prime number and that u is the square root of $-1 \bmod p$ that satisfies $1 \leq u \leq(p-1) / 2$. Take u / p to be the rational number of part (1). In other words, write

$$
\frac{u}{p}=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle
$$

Show that $k_{n}=p$ and that $h_{n}=u$. Using the formula $h_{n} k_{n-1}-k_{n} h_{n-1}=(-1)^{n-1}$, show that n is even and that $k_{n-1}=u$.

Since $\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=u / p$, and since this fraction is in lowest terms (because u is not divisible by p), we do have $h_{n}=u$ and $k_{n}=p$. The formula $h_{n} k_{n-1}-k_{n} h_{n-1}=(-1)^{n-1}$ thus reads $u k_{n-1}-p h_{n-1}=(-1)^{n-1}$. It gives in particular the mod p congruence $u k_{n-1} \equiv$ $(-1)^{n-1}$. Multiplying by u, we get $k_{n-1} \equiv(-1)^{n} u$. This means, in particular, that $k_{n-1} \equiv \pm u$ We have $p=k_{n} \geq a_{n} k_{n-1}$ and also that a_{n} is at least 2 (by our convention that the continued fraction expansion of a rational number does not end in 1). Hence $k_{n-1}<p / 2$. Because we have, by assumption, the inequality $u<p / 2$, we cannot have $k_{n-1} \equiv-u$, which would give $k_{n-1}=p-u>p / 2$. Hence we are forced to conclude that k_{n-1} is congruent to $u \bmod p$ and thus is in fact equal to u since both u and k_{n-1} are positive integers that are less than p. Recalling the congruence $k_{n-1} \equiv(-1)^{n} u$, we conclude that n is even.
3. Combining (1) and (2), show that

$$
p / u=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle
$$

Conclude that the strings $\left(a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right)$ and $\left(a_{1}, \ldots, a_{n}\right)$ are identical.
The expression $\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle$ has been shown to be k_{n} / k_{n-1}, but in our situation we have seen that $k_{n}=p$ and $k_{n-1}=u$. Hence we do have $p / u=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle$. Now $u / p=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=a_{0}+1 /\left\langle a_{1}, \ldots, a_{n}\right\rangle$, but $a_{0}=0$ since u / p is between 0 and 1 . Hence $p / u=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, which gives a second continued fraction expansion for p / u. There are, in fact, two different continued fraction expansions for a rational number (Theorem 7.2 on page 329). However, these expansions differ only in the trivial way that is explained at the beginning of $\S 7.2$. It follows from the discussion of $\S 7.2$ that two continued fraction representations of a rational number that have the same length must in fact be identical. In other words, the "strings" described by the problem are the same.

