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1. Suppose that 〈a0, a1, . . . , an〉 is the simple continued fraction representation of a rational
number. (Recall that our conventions dictate that an be at least 2.) Define the numbers
hn and kn as usual. Establish the formula

kn
kn−1

= 〈an, an−1, . . . , a2, a1〉.

(Hint: it seems helpful to recall the recursive formula that defines ki in terms of ai and
previous ks.)

This seems to go easily by induction. If n = 1, the formula is correct because 〈a1〉 = a1
and because k0 = 1, k1 = a1. Assume that n is at least 2 and that the result is true with
n− 1 in place of n. We have

〈an, an−1, . . . , a2, a1〉 = an +
1

〈an−1, . . . , a2, a1〉
= an +

kn−2

kn−1
=

kn
kn−1

,

where the last step comes from the recursive formula alluded to by the statement of the
problem.

2. Suppose that p is an odd prime number and that u is the square root of −1 mod p
that satisfies 1 ≤ u ≤ (p− 1)/2. Take u/p to be the rational number of part (1). In other
words, write

u

p
= 〈a0, a1, . . . , an〉.

Show that kn = p and that hn = u. Using the formula hnkn−1− knhn−1 = (−1)n−1, show
that n is even and that kn−1 = u.

Since 〈a0, a1, . . . , an〉 = u/p, and since this fraction is in lowest terms (because u is not
divisible by p), we do have hn = u and kn = p. The formula hnkn−1 − knhn−1 = (−1)n−1

thus reads ukn−1−phn−1 = (−1)n−1. It gives in particular the mod p congruence ukn−1 ≡
(−1)n−1. Multiplying by u, we get kn−1 ≡ (−1)nu. This means, in particular, that
kn−1 ≡ ±u We have p = kn ≥ ankn−1 and also that an is at least 2 (by our convention
that the continued fraction expansion of a rational number does not end in 1). Hence
kn−1 < p/2. Because we have, by assumption, the inequality u < p/2, we cannot have
kn−1 ≡ −u, which would give kn−1 = p − u > p/2. Hence we are forced to conclude
that kn−1 is congruent to u mod p and thus is in fact equal to u since both u and kn−1

are positive integers that are less than p. Recalling the congruence kn−1 ≡ (−1)nu, we
conclude that n is even.



3. Combining (1) and (2), show that

p/u = 〈an, an−1, . . . , a2, a1〉.

Conclude that the strings (an, an−1, . . . , a2, a1) and (a1, . . . , an) are identical.

The expression 〈an, an−1, . . . , a2, a1〉 has been shown to be kn/kn−1, but in our situation
we have seen that kn = p and kn−1 = u. Hence we do have p/u = 〈an, an−1, . . . , a2, a1〉.
Now u/p = 〈a0, a1, . . . , an〉 = a0 + 1/〈a1, . . . , an〉, but a0 = 0 since u/p is between 0 and 1.
Hence p/u = 〈a1, . . . , an〉, which gives a second continued fraction expansion for p/u. There
are, in fact, two different continued fraction expansions for a rational number (Theorem 7.2
on page 329). However, these expansions differ only in the trivial way that is explained
at the beginning of §7.2. It follows from the discussion of §7.2 that two continued fraction
representations of a rational number that have the same length must in fact be identical.
In other words, the “strings” described by the problem are the same.


