1. Suppose that $\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle$ is the simple continued fraction representation of a rational number. (Recall that our conventions dictate that a_{n} be at least 2.) Define the numbers h_{n} and k_{n} as usual. Establish the formula

$$
\frac{k_{n}}{k_{n-1}}=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle
$$

(Hint: it seems helpful to recall the recursive formula that defines k_{i} in terms of a_{i} and previous $k \mathrm{~s}$.)
2. Suppose that p is an odd prime number and that u is the square root of -1 $\bmod p$ that satisfies $1 \leq u \leq(p-1) / 2$. Take u / p to be the rational number of part (1). In other words, write

$$
\frac{u}{p}=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle .
$$

Show that $k_{n}=p$ and that $h_{n}=u$. Using the formula $h_{n} k_{n-1}-k_{n} h_{n-1}=$ $(-1)^{n-1}$, show that n is even and that $k_{n-1}=u$.
3. Combining (1) and (2), show that

$$
p / u=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle .
$$

Conclude that the strings $\left(a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right)$ and $\left(a_{1}, \ldots, a_{n}\right)$ are identical.

