Professor K.A. Ribet

Assignment due November 10, 2011

Let p be an odd prime and write $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}$ for the ring of integers mod p. Fix a non-zero element D of \mathbf{F} , and let $R = \mathbf{F}[\sqrt{D}]$. We think of R as the set of sums $a + b\sqrt{D}$ with a and b in F. Formally, it is the set of pairs $(a, b) \in \mathbf{F}^2$; in particular, R has p^2 elements. Addition is defined componentwise; multiplication is defined in the obvious way that takes account of the rule $\sqrt{D} \cdot \sqrt{D} = D$. Unless I've made a typing or other error, the formula is $(a, b) \cdot (c, d) = (ac+bdD, ad+bc)$. For $\alpha = a + b\sqrt{D} \in R$, we define $\overline{\alpha} = a - b\sqrt{D}$, as usual. If D = -1, we are mimicing the construction of \mathbf{C} (starting with \mathbf{R}), including the usual complex conjugation.

A number $\alpha \in R$ is said to be *invertible* if there is a $\beta \in R$ for which $\alpha\beta = 1$.

a. Show that α is invertible if and only if $\alpha \overline{\alpha}$ is non-zero.

b. If D is a non-square in **F**, show that α is invertible if and only if α is non-zero.

c. If D is a (non-zero) square, calculate the number of invertible elements of R.

Problems from the Book:

- $\S4.2$, problem 21
- $\S7.1$, problems 1, 3: do all parts by hand and then using sage.
- $\S7.1$, problem 5
- §7.3, problems 1, 2, 3a