
Math 115 Professor K. A. Ribet
Midterm Exam September 27, 2006

This exam was an 50-minute exam. It began at 2:10PM. There were 3 problems, for which
the point counts were 9, 10 and 11. The maximum possible score was 30.

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3
players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet
of notes. Your paper is your ambassador when it is graded. Correct answers without
appropriate supporting work will be regarded with extreme skepticism. Incorrect an-
swers without appropriate supporting work will receive no partial credit. This exam
has five pages, including this cover sheet and a blank page at the end. Please write
your name on each page. At the conclusion of the exam, please hand in your paper at
the front of the room.

1. Label the following statements as TRUE or FALSE, giving a short explanation (e.g., a
proof or counterexample) for your answer:

a. If an integer ≥ 2 divides the product of two positive integers, then it cannot be relatively
prime to both of the integers.

This is true. If a divides bc and is prime to c, then a divides b. Thus a is a common divisor
of a and b. If a is greater than 1, a and b are thus not relatively prime.

b. ordp(n + m) = min{ordp n, ordp m} for p ≥ 5 and positive integers n and m. [When n
is a positive integer and p is a prime, recall that ordp n = t if pt is the highest power of p
dividing n.]

This looks vaguely attractive, but it’s false. For example, ord5(15) = ord5(10) = 1, but
ord5(15 + 10) = ord5(25) = 2.

c. If a product of an even number of prime numbers is 1 plus a multiple of 4, the product
is a sum of two perfect integer squares.

If p and q are distinct primes that are 3 mod 4, their product is 1 mod 4 but isn’t a sum of
two squares (as we discussed in class). For example, 21 = 3 · 7 is not a sum of two squares.
Of course, you can check this directly by listing the squares less than 21 and observing
that no two of them add up to 21.

2. Suppose that p is a prime number such that 2p − 1 is prime. Show that the sum of the
positive divisors of 2p−1(2p−1) is 2p(2p−1). [Only 44 such prime numbers p are known. The
most recently discovered such prime is 32582657; according to http://primes.utm.edu/,
mathematicians at the University of Central Missouri discovered on September 6 that
232582657 − 1 is prime.]



Let q = 2p − 1, so q is prime by hypothesis. The divisors of 2p−1q are the numbers 2i with
0 ≤ i ≤ p − 1 and the numbers 2iq with i in the same range. Adding up these numbers,
we get (1 + 2 + 4 + · · · + 2p−1)(1 + q). The sum of the powers of 2 is 2p − 1 (geometric
series formula, or otherwise) and the number 1 + q is 2p. This gives what is wanted.

A number whose divisors sum to twice the number is called perfect. It is fairly easy to
show that all even perfect numbers are of the form 2p−1(2p − 1) with 2p − 1 prime; the
first two such numbers are 6 and 28. It is widely expected that there are no odd perfect
numbers, but this statement has not been proved (so far).

3. When n is a positive integer, show that the prime factorization of

(
3n

n

)
involves no

primes p with 3n/4 < p ≤ n and no primes p with 3n/2 < p ≤ 2n. For example, if n = 31,
then 3n/4 = 23.25 and 3n/2 = 46.5. In the factorization of(

93
31

)
= 25 · 33 · 7 · 11 · 13 · 17 · 23 · 37 · 41 · 43 · 67 · 71 · 73 · 79 · 83 · 89,

the primes 29 and 31 do not appear and the primes 47, 53, 59 and 61 are absent as well.

In class, I added the hypothesis that n is at least 5. For n = 3, we have
(

9
3

)
= 84, which

is divisible by n, so the problem would be false without some extra hypothesis. (Thanks to
the student who pointed this out during the exam!) The point is that we are dealing only
with primes that are greater than 3n/4 and we want their squares to be greater than 2n.

For this, we need 9n2/16 ≥ 2n, or n ≥ 32
9

. The hypothesis n ≥ 5 certainly ensures this!

We have a formula for ordp

(
3n

n

)
, namely

r∑
k=1

(
b3n

pk
c − b2n

pk
c − b n

pk
c
)

, where r can be

taken to be any integer such that pr+1 > 2n. As explained in the previous paragraph, we
can take r = 1, so that

ordp

(
3n

n

)
= b3n

p
c − b2n

p
c − bn

p
c.

To say that p does not occur in the factorization of
(

3n

n

)
is to say that ordp

(
3n

n

)
= 0.

This means that we have to establish the formula b3n

p
c = b2n

p
c + bn

p
c when p is in the

two ranges 3n/4 < p ≤ n and 3n/2 < p ≤ 2n. In the first range, we have 1 ≤ n/p < 4/3,
so that 2 ≤ 2n/p < 8/3 and 3 ≤ 3n < 4. Thus bn/pc = 1, b2n/pc = 2 and b3n/pc = 3.
Since 3 = 2 + 1, we are OK. In the second range, 1/2 ≤ n/p < 2/3, 1 ≤ 2n/p < 4/3 and

3/2 ≤ n/p < 2; the equation b3n

p
c ?= b2n

p
c+ bn

p
c is true because 1 = 1 + 0.
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