1. Let $\alpha=a+c \omega$ be an element of $\mathbf{Z}[\omega]$, and suppose that $\alpha \omega=b+d \omega$. (The quantities a, b, c and d are intended to be ordinary integers.) Show that $N(\alpha)=\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
2. Suppose that $\alpha \in \mathbf{Z}[\omega]$ is prime to 3 (i.e., to $\lambda=1-\omega$). Show that there is a unique unit $u \in \mathbf{Z}[\omega]$ such that $u \equiv \alpha \bmod 3$. (The congruence means that $u-\alpha$ is a multiple of 3 in $\mathbf{Z}[\omega]$.)
3. Suppose that p is a prime $\equiv 1 \bmod 3$. We proved in class on December 1 that there are integers n and m so that $4 p=n^{2}+3 m^{2}$. Was the coefficient 4 really necessary? Observe that $7=2^{2}+3 \cdot 1^{2}, 13=1^{2}+3 \cdot 2^{2}, 19=4^{2}+3 \cdot 1^{2}, 31=2^{2}+3 \cdot 3^{2}, \ldots$, so it looks as if the coefficient " 4 " is not necessary. Prove that we can dispense with it, or else show that we do need to carry it along with us.
4. In the formula $4 p=n^{2}+3 m^{2}$ of the previous problem, show that we can choose m to be divisible by 3 and that n and m are unique up to sign if we make that choice. If we insist on the congruence $n \equiv 1 \bmod 3$ as well as the congruence $m \equiv 0 \bmod 3$, show that n is unambiguously defined as a function of p. Calculate the function $p \mapsto n$ for as many values of $p \equiv 1 \bmod 3$ as you can without getting bored or tired. (If you write a program and compute a big table, you won't get bored, but you might get tired.)
5. For as many prime numbers p as you can, calculate the number of solutions of the congruence $x^{3}+y^{3} \equiv 1 \bmod p$. The solutions are pairs of integers mod p that satisfy the congruence, so there are at most p^{2} solutions. You might get a table that includes data like this:

$$
\begin{array}{r||r|r|r|r|l}
p & 7 & 13 & 19 & 31 & \cdots \\
\hline \text { \# solns. } & 6 & 6 & 24 & 33 & \cdots .
\end{array}
$$

Find a rule for the number of solutions when $p \equiv 2 \bmod 3$ and prove that your rule is correct. For $p \equiv 1 \bmod 3$, guess a rule that links the number of solutions $\bmod p$ to the function $p \mapsto n$ of problem 4 . Verifying that the rule is correct is much harder for $p \equiv 1$ $\bmod 3$ than for $p \equiv 2 \bmod 3$; Gauss did the verification in his mathematical diary.

