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In the theory of automorphic representations of a reductive algebraic
group G over a number field K, it is broadly — but not always — true that
irreducible representations occurring in L2(GA/GK) occur with multiplicity
one. In a classical special case (G = GL(2), K = Q, and where we restrict
attention to automorphic representations which are holomorphic, cuspidal,
and of weight 2), the Galois-theoretic counterpart of the above “multiplicity
one phenomenon” is the assertion that given a newform of the above type,
of level N , the (two-dimensional p-adic) Gal(Q/Q)-representation associated
to it occurs with multiplicity one in the p-adic Tate module of J1(N).

For some important arithmetic applications, however, one is led to search
for criteria guaranteeing certain analogues of the above “multiplicity one phe-
nomenon” valid for the mod p Galois representations associated to newforms.
The “mod p multiplicity” questions are somewhat more delicate than their
p-adic counterparts. Indeed, to our knowledge, the main cases where the
mod p Galois representation questions have been treated seriously so far are
for cuspidal newforms of weight two which are either unramified at p [20, 30]
or ordinary and nonspecial at p [25, 43].

The present article concerns itself with a “missing p-ordinary case,” one
for which the newform is “special” at p.1 We assume, more precisely, that
the level of the newform is divisible by p but not by p2, and also that the
Nebentypus character of the form is trivial. (Our method might also treat
the more general case in which the character is unramified at p, but possibly
non-trivial.) For the case where the character is ramified at p, see [12].

1We also require that the associated mod p Galois representation be absolutely ir-
reducible, avoiding the important, but much more difficult, case of Eisenstein primes
[20, 24].



This case arises in the second author’s article [30] on Serre’s conjectures.
Assume that p is an odd prime, and suppose that ρ is an irreducible mod p
representation of Gal(Q/Q) which arises from the space of weight-2 modular
forms on Γo(M). (We then say that ρ is modular of level M .) Assume that
` 6= p is a prime factor of M for which ρ is unramified at `. Then Serre’s
conjectures [37] predict that ρ is modular of level Mo, where Mo is the prime-
to-` part of M . This statement was proved by the first author [22] in case
` “exactly divides M” (i.e., Mo = M/`) and the congruence ` ≡ 1 mod p is
not satisfied. (See [30], Theorem 6.1.) It was proved by the second author
if ` exactly divides M and the newform giving ρ is unramified at p, i.e., p is
prime to M ([30], Theorem 8.2). The methods of [30] show, more generally,
that ρ is modular of level Mo whenever ` exactly divides M and ρ occurs
with multiplicity one in the Jacobian Jo(M). This motivated our interest in
the mod p multiplicity one question for Galois representations.

The mod p multiplicity-one question for Galois representations has an
intriguing, and relatively complicated, answer for twisted forms of GL(2)
[32]. It would be quite interesting to have even a conjectural picture telling
us what to expect for multiplicities of mod p Galois representations in a more
general context.

We would like to thank Bas Edixhoven for enlightening conversations on sub-
jects related to this article and for detailed comments on our preliminary versions.
We also thank the IHES for providing the congenial setting in which much of this
work was done.
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1 Introduction and statement of the main theorem

1.1 The representations Vϕ

Let M be a positive integer. Let Γo(M) be (as usual) the subgroup of

SL(2,Z) which consists of matrices
(

a b
c d

)
∈ SL(2,Z) with c ≡ 0 (mod

M). Let Xo(M) be the associated modular curve over Q. Finally, let Tn

for n ≥ 1 denote the standard Hecke correspondences on Xo(M). (See, for
example, [24], Chapter 2, §5 for a description of the Hecke operators Tq for q
prime. When q divides M , our operator Tq is the “Atkin operator” denoted
Uq in [24].)

These operators induce endomorphisms on the space S2(Γo(M)) of weight-
2 cusp forms on the group Γo(M) and on the Jacobian

J = Jo(M) = Pico(Xo(M))

of Xo(M). We write simply Tn for each of these endomorphisms. (The endo-
morphism Tn of Jo(M) is denoted T ∗n in [18].) The subrings of End(Jo(M))
and of End(S2(Γo(M))) which these operators generate are the “same.” More
precisely, the faithful operation of End(Jo(M)) on S2(Γo(M)) (coming from
the fact that this latter space is the cotangent space of the abelian variety
dual to Jo(M)) maps the endomorphism labeled Tn of Jo(M) to the endomor-
phism of S2(Γo(M)) labeled Tn. We let TM be the subring of End(Jo(M))



generated by the Tn, viewing this ring, when convenient, as operating on
S2(Γo(M)).

Let ϕ : TM → Fp be a ring homomorphism. The kernel of ϕ is a maximal
ideal m = mϕ of TM . As usual, we denote by J [m] the “kernel of m on J ,”
i.e., the intersection of the kernels of all elements of m acting on J(Q). This
subgroup of the finite group J [p] has natural commuting actions of Gal(Q/Q)
and of the residue field km = TM/m. Further, the field km is embedded in Fp

by ϕ. Let
Vϕ : = J [m]⊗km Fp.

Then Vϕ is a finite-dimensional (continuous) representation of Gal(Q/Q) over
Fp. The vector space Vϕ is easily seen to be non-zero.

The representations J [m] and Vϕ may be compared with the canonical
two-dimensional representation ρm of Gal(Q/Q) which is associated to m

([11], Th. 6.7 or [30], Prop. 5.1). Recall that this is the semisimple represen-
tation of Gal(Q/Q) over km, unique up to isomorphism, which is unramified
outside the set of primes dividing pM and which satisfies

trace(ρm(σr)) ≡ Tr mod m, det(ρm(σr)) ≡ r mod m

for all primes r not dividing pM . (Here σr is a Frobenius element for r
in Gal(Q/Q).) We define ρϕ to be the representation ρm ⊗km Fp, i.e., the
representation of Gal(Q/Q) deduced from ρm by the base change km → Fp

induced by ϕ.
These two-dimensional representations are said to be modular of level M .

More generally, suppose that F is an algebraic extension of Fp. We say that
a semisimple representation ρ : Gal(Q/Q) → GL(2,F) is modular of level
M if there is an embedding ι : F ↪→ Fp so that ρ, when viewed over Fp via
ι, is isomorphic to some ρϕ. It is equivalent to ask that the representation
ρ⊗F Fp be of the form ρϕ for each embedding ι : F ↪→ Fp.

Assume that the two-dimensional representation ρm is irreducible. Then
by the Eichler-Shimura relations, the Cebotarev Density Theorem, and the
Brauer-Nesbitt Theorem, one sees that the semisimplification of J [m] as a
km[Gal(Q/Q)]-module is a direct sum of some number of copies of ρm ([20],
Chapter II,§14 or [30], Th. 5.2). Also, the representation ρϕ is automatically
an irreducible representation of Gal(Q/Q) over Fp, provided that p 6= 2.2

2According to a recent theorem of Boston, Lenstra and the second author [6], J [m] is
semisimple whenever ρϕ is irreducible over Fp.



1.2 Questions of multiplicity

Definition 1 The multiplicity of ρm in the representation J [m] is the multi-
plicity of ρm in the semisimplification of J [m]. We denote this integer by µm

or µϕ. We have µϕ = dim Vϕ/2.

The multiplicity µm is “typically” equal to 1. To cite the simplest possible
example, take M = 11. Then Jo(11) is an elliptic curve, T = Z, and the
ideals m are the prime ideals (p) of Z. The kernel Jo(11)[p] is then an Fp-
vector space of dimension two. In [20], the first author showed more generally
that µm = 1 when M is a prime, except perhaps in a small number of special
situations when p = 2. (In these special situations, no example has been
found where µm 6= 1.) In [30] (Th. 5.2b), the second author employed the
techniques of [20] to prove a theorem valid when M is not necessarily prime,
but p does not divide 2M .

Main Theorem Let M = pN , where N is prime to p. Let m be a maximal
ideal of the Hecke ring TM with T/m of characteristic p. Suppose that ρm is
an absolutely irreducible representation of Gal(Q/Q). Assume further that
ρm is not modular of level N . Then µm = 1.

The absolute irreducibility of ρm, is equivalent to the irreducibility of ρm

as a representation of Gal(Q/Q) over T/m whenever p is odd. This follows
from the fact that ρm(c), where c is a complex conjugation in Gal(Q/Q),
then has the distinct eigenvalues +1, −1 in T/m.

The condition that ρm is not modular of level N may be examined from
varied perspectives. Serre conjectured in 1985 that ρm is finite at p ([37],
p. 189) if and only if ρm is modular of level N ([36], Conjecture C2, cf. [37]).
This conjecture was proved by the first author soon afterwards: see [22], or
[30], Theorem 6.1.

The condition may also be expressed in terms of newforms of weight 2.
To say that ρm is modular of level pN means, concretely, that it is a mod p
representation attached to a weight-2 newform f , having trivial character,
whose level divides pN . To say that it is not modular of level N then means
that every f giving rise to ρm has level divisible by p. In the language of rep-
resentation theory, f is “special” at p in the sense that the component at p
of the adelic representation of GL(2) associated to f is a special representa-
tion of GL(2,Qp). (See [25] for results in the case of weight-two p-ordinary
modular forms which are not special at p.)

Suppose, more generally, that m ⊂ TM is a maximal ideal, and assume
that ρm is absolutely irreducible. What is the multiplicity of ρm in Jo(M)[m]?



In cases where the residue characteristic p of m divides the integer M , we
have little information other than that provided by the Main Theorem. For
example, we have not been able to determine the multiplicity in all cases
when M = pN is as in the Main Theorem, but ρm is modular of level N .
We have been able to show, at least, that there are some cases where the
multiplicity exceeds 1; those which we have discovered have M divisible by
p3 and ρm modular of level M/p2 (see §13 below).

The reader may wish to consult also [32], which gives a systematic con-
struction of multiplicity-two examples for Jacobians of Shimura curves.

1.3 mod p Galois representations ρ and homomorphisms ϕ

The discussion of this section records some thoughts on placing the Main
Theorem in a somewhat larger context. It will not be used in the rest of
the article. For simplicity, we suppose throughout this discussion that p is a
prime number different from 2 and 3.

We shall be concerned with mod p Galois representations arising from
weight-two eigenforms with Nebentypus, whose associated Dirichlet charac-
ters have conductor prime to p. In other words, we shall consider cusp forms
of weight two on groups of the form Γ1(N) ∩ Γo(p

ν), where N an integer
prime to p and where Γ1(N) is, as usual, the subgroup of SL(2,Z) which is

represented by matrices
(

a b
c d

)
which satisfy the congruences a ≡ d ≡ 1

and c ≡ 0 (mod N).
There is a standard operation of (Z/NZ)∗ on the space of such forms.

For each a ∈ (Z/NZ)∗, the corresponding automorphism of the space of
cusp forms is the “diamond bracket operator” 〈a〉. This operator arises
from an automorphism, again denoted 〈a〉, of the modular curve over Q
which is associated with the subgroup Γ1(N) ∩ Γo(p

ν) of SL(2,Z). (See,
for example, [18] for a discussion of 〈a〉 in varied guises.) In the context
of Γ1(N) ∩ Γo(p

ν), we include the operators 〈a〉, for a ∈ (Z/NZ)∗, along
with the Hecke operators Tn, in defining TpνN . A semisimple representation
ρϕ: Gal(Q/Q) → GL(2,Fp) is again associated to each ring homomorphism
ϕ : TpνN → Fp. This representation satisfies

trace(ρϕ(σr)) = ϕ(Tr), det(ρϕ(σr)) = ϕ(〈r〉)r

for all prime numbers r which are prime to pN .
Similarly, for each M ≥ 1, we have a diamond bracket operation of

(Z/MZ)∗ on the space of cusp forms of weight two on Γ1(M).



Let ρ : Gal(Q/Q) → GL(2,Fp) be a continuous, irreducible representa-
tion with odd determinant. Serre ([37],§3) has associated to such a repre-
sentation three invariants: N = N(ρ), k = k(ρ), and ε = ε(ρ). Here N is a
positive integer prime to p (which we shall call the tame level of ρ), k is an
integer ≥ 2 (the weight of ρ), and ε is a homomorphism from (Z/NZ)∗ to F

∗
p

(the character of ρ).
Given such a homomorphism ε : (Z/NZ)∗ → F

∗
p, we have its multiplica-

tive (or “Teichmüller”) lifting εo : (Z/NZ)∗ → Q
∗
p, the unique character of

finite order prime to p which lifts ε.
Serre conjectures ([37] 3.2.3, 3.2.4) that there exists a classical (parabolic)

newform over Qp, on Γo(N), with weight k and character εo, such that the
mod p Galois representation associated to it (by the construction of Shimura
when k = 2 and Deligne for k > 2) is equivalent to ρ. (As Serre has noted
[38], his conjectures must be modified slightly in the cases p = 2 and p = 3.
These cases have been excluded in our discussion.)

Suppose, now, that ρ is given with invariants (N, k, ε) and that Serre’s
conjecture holds for ρ, i.e., that there is a newform with invariants (N, k, εo)
whose associated mod p Galois representation is equivalent to ρ. Suppose
further that

k ≡ 2 mod p−1.

The determinant of ρ is then the product χε, where χ is the mod p cyclotomic
character of Gal(Q/Q). This suggests that ρ arises from an eigenform of
weight two on Γ1(N) ∩ Γo(p

ν) for some integer ν ≥ 0. If this is the case for
a given ν, we shall refer to pν as a wild level for ρ.

Proposition 1 There is a newform with invariants (pνN, εo, 2) whose asso-
ciated mod p Galois representation is equivalent to ρ, for some ν ≤ 2.

Proof . Using Theorem 3.5(d) of [4], we can find an integer j such that the
twist of ρ by the jth power of the mod p cyclotomic character arises from an
eigenvector g in the space of weight-two cusp forms on Γ1(pN) over Fp. This
eigenform may be chosen so that the diamond bracket operation of (Z/pNZ)∗

on g is given as follows: the group (Z/NZ)∗ operates via the character ε, and
the group (Z/pZ)∗ operates as the (2j)th power of the identity character
(Z/pZ)∗ → F∗p. Equivalently, (Z/NZ)∗ operates via (the mod p reduction
of the character) εo, while (Z/pZ)∗ operates via ω2j, where ω is the unique
Dirichlet character (Z/pZ)∗ → Q

∗
p which lifts the identity character. After

twisting g by ω−j, we obtain a weight-two eigenform on the group Γ1(p
2N),



with character ε, whose associated Galois representation is ρ. (For a conve-
nient discussion of the behavior of characters and levels of eigenforms under
twisting, see [3], §3.) This eigenform is a modular form over Fp.

It follows by a well known lemma ([11], lemme 6.11) that ρ arises from a
weight-two eigenform on Γ1(L), for some level L dividing p2N . Further, the
associated Dirichlet character of (Z/LZ)∗ is a lift of the character ε. By [8],
Prop. 3 (which applies because we have supposed p ≥ 5), we may assume
that this lift is εo. Also, we may suppose that the eigenform is a newform,
possibly after replacing L by a divisor of L. (A short summary of the theory
of newforms is presented in [28], §1.) The Proposition now follows from the
fact that L is necessarily divisible by N ([8], §1.1 or [19], Proposition 0.1). �

Let ρ : Gal(Q/Q) → GL(2,Fp) be an irreducible representation as above,
i.e., one of tame level N for which Serre’s conjecture holds. Suppose that pν

is a wild level for ρ.

Definition 2 A homomorphism ϕ : TpνN → Fp is associated to ρ if the
representations ρ and ρϕ are isomorphic. The homomorphism ϕ : TM → Fp

is (p-)ordinary if ϕ(Tp) 6= 0. It is (p)-singular if ϕ(Tp) = 0.

For each homomorphism ϕ associated to ρ, a multiplicity µϕ is defined as
above. The methods presented below should show that we have µϕ = 1 in
the case where ν = 1 and where pν is a minimal wild level for ρ, i.e., where
ρ is not modular of level N . Similarly, the argument of [20], Chapter II,
Proposition 14.2 (cf. [30], Proposition 5.1b) should prove that µ = 1 whenever
ν = 0. (In both cases, one needs only to check that arguments given for forms
on Γo(N) work equally well for Γ1(N).) This suggests that the multiplicity
µϕ should be 1 in the remaining case where pν is a minimal wild level for
ρ, i.e., that for which ν = 2 and ρ does not arise from weight-2 forms on
Γ1(N) ∩ Γo(p). It would be very interesting to investigate this question.

We next discuss the extent to which ϕ is determined by ρ.

Proposition 2 There is at most one p-singular homomorphism ϕ associ-
ated to ρ.

Proof . Let ϕ be a p-singular homomorphism ϕ associated to ρ. By definition,
the image of Tp under ϕ is 0. The images of the diamond bracket operators
〈a〉, for a ∈ (Z/NZ)∗, are the character values ε(a), where ε = ε(ρ). Similarly,
for each prime number r not dividing pN , ϕ(Tr) = trace(ρϕ(σr)). It remains



to show that the quantity ϕ(Tr) is uniquely determined when r is a prime
dividing N .

Let V be a two-dimensional Fp-vector space which is furnished with a
continuous Gal(Q/Q)-action equivalent to ρ. For each prime r 6= p, let
Ir ⊂ Gal(Q/Q) be an inertia group for r. We shall prove the formula

ϕ(Tr) = trace(σr | V Ir), (1)

where V Ir is the space of Ir-invariants on V .
For this, we recall that the formal power series

∑
n≥1

ϕ(Tn)qn is a weight-two

cusp form on Γ1(N)∩Γo(p
ν), with coefficients in Fp (cf. [30], §5). This means

that there is a cusp form on this group, with coefficients in the “integer ring”
O of Qp, whose q-expansion reduces to

∑
n≥1

ϕ(Tn)qn modulo the maximal

ideal p of O. The form
∑

n≥1
ϕ(Tn)qn is an eigenform for the Hecke operators

Tn, with eigenvalues ϕ(Tn).
By a well known lemma ([11], 6.11), one may find an eigenform f =∑

anq
n with coefficients in O whose eigenvalues λn lift the ϕ(Tn). There is

then a newform g of level dividing pνN whose nth coefficient coincides with λn

for n prime to pN . The level of g is in fact divisible by N . Indeed, let W be
the p-adic representation of Gal(Q/Q) associated to f . According to results
of Deligne, Langlands and Carayol (see [7]), the level of g is the conductor
of W . Further, this conductor is divisible by the conductor N = N(ρ) which
Serre associates to V ([8], §1.1 or [19]).

Thus the conductors of V and W coincide locally at each prime r 6= p.
Concretely, this equality means that the Fp-dimension of V Ir agrees with the
Qp-dimension of the space W Ir ([8], loc. cit.). By viewing V as the mod p

reduction of a lattice in W , we then obtain the congruence

trace(σr | V Ir) ≡ trace(σr | W Ir) mod p.

However, by the results of Deligne, Langlands and Carayol mentioned above,
we have the equality

trace(σr | W Ir) = λr.

Since λr reduces to ϕ(Tr) mod p, we find the desired congruence (1). �

Analogously, we find:

Proposition 3 There is at most one p-ordinary homomorphism ϕ associ-
ated to ρ.



Proof . In view of the proof we have given for Proposition 2, the proposition
will follow after we show that there is at most one possibility for ϕ(Tp), given
that ϕ(Tp) is non-zero and that ϕ is associated to ρ.

Proposition 4 ([23]) Let ϕ be associated to ρ and suppose that ϕ(Tp) 6= 0.
Then V , viewed as a representation of a decomposition group for p, Dp, in
Gal(Q/Q), has a 1-dimensional unramified quotient on which σp acts by
multiplication by ϕ(Tp).

This proposition follows from Theorem 9 of [23] (which, incidentally, re-
quires the hypothesis p > 3 which we imposed above). It clearly implies that
there is at most one non-zero possibility for ϕ(Tp), since V cannot have two
distinct unramified quotients. Indeed, the full representation V cannot be
unramified at p, since the determinant of V is given by the character εχ,
which is ramified at p. (Note that p 6= 2 by assumption.) �

2 Admissible models and admissible morphisms

Let p be a prime number. Let K be a finite field extension of Qp, O ⊂ K its
ring of integers, and k its residue field. Let Oh be the completion of a strict
henselization of O, and denote by k the (algebraically closed) residue field of
Oh. The normalized valuation on Oh is the one which gives a uniformizer of
O the value 1.

Let n be a positive integer. A complete local Oh-algebra R will be said
to be of type n if there is an element ζ ∈ Oh of normalized valuation n, such
that R is isomorphic (as complete local Oh-algebra) to Oh[[X, Y ]]/(XY − ζ),
where Oh[[X, Y ]] is the power series ring in the two variables X and Y over
Oh. If R is of type n, then R is a rational singularity, and, in fact, an isolated
normal singularity of type An in the sense of [1] (see also: [16] and [10] Chap.
VI 6.9). If R is of type 1, then R is regular, and the images of X and Y
provide a regular sequence for R. If R is of type n > 1, then R is not regular.
Nevertheless, the scheme Spec R has a canonical (minimal) desingularization
obtained by a series of blow-ups; the inverse image of the closed point of
Spec R in this canonical desingularization is a chain of n−1 curves of genus
zero. For a readable and graphic account of this blow-up procedure, at least
in the analogous situation of complex surfaces, see Pinkham’s survey article
[26].

Say that a local Oh-algebra R is admissible if it is of type n for some
positive integer n.



Let X be a proper flat O-scheme. Then we will call X admissible if the
closed fiber is reduced, every irreducible component of the closed fiber is a
smooth curve, and the completions of the strict henselizations of the local
rings of the scheme X at all closed points x at which the structure morphism
X → SpecO is non-smooth are admissible local Oh-algebras. A proper flat
admissible O-scheme has the property that its closed fiber is reduced, and
is a union of smooth curves which possesses only ordinary double points as
singularities. In particular, such a scheme X has only a finite number of
non-regular points, and possesses a canonical minimal desingularization X̃
obtained by punctual blow-ups.

Let X/K be a smooth, proper (not necessarily irreducible) curve. An
admissible model for X/K over O is a proper flat model X/O for X/K over
SpecO such that the scheme X/O is admissible. If X/O is admissible, then

the canonical desingularization X̃/O is also admissible.

Example 1 Let N be an integer relatively prime to p, and let Xo(Np)/Qp

be Shimura’s canonical model of the modular curve Xo(Np) over Qp. Then
the canonical model Xo(Np)/Zp as described in [10, 14] is admissible in the
above sense. The special fiber of Xo(Np)/Zp is isomorphic to two copies of
Xo(N)/Fp intersecting transversally at each of the supersingular points, these
supersingular points being of type An for some n ≥ 1.

For a proof of this assertion, the reader can consult [10], Chapter VI,
Theorem 6.9, where in fact a more general result (which will also be useful
to us) is proved. Namely, let N be an integer prime to p, let H be a subgroup
of GL(2,Z/NZ), and let H˜ be the inverse image of H in GL(2, Ẑ). In [10],
the coarse moduli scheme MH˜∩Γo(p) over Z[ 1

N
] is studied. Let O = Zp and

let Xo(p; H˜)/Zp be the pullback of MH˜∩Γo(p) to Zp. (It should perhaps be
noted that the scheme Xo(p; H˜)/Zp is not necessarily irreducible, but this
is not much of a bother.) The indicated theorem of [10] guarantees that
Xo(p; H˜)/Zp is admissible.

Consider a finite morphism

f : X1/O → X2/O

between admissible O-schemes which is surjective on generic fibers. It follows
that f is finite and faithfully flat on generic fibers. The restriction of f to
fibers over k has the property that it is again finite and surjective (but not
necessarily flat).



If s2 is any singular point of the fiber of X2 over k, denote by A2 and B2

the two irreducible components of X2/k containing s2. Let s1 be a point of

X1/k in f−1(s2).

Definition 3 The mapping f is said to be equi-ramified at s1 if:

(a) The point s1 is singular in X1/k. The two components of X1/k containing
s1 then have the property that one of them (say, A1) is mapped by f
onto A2 and the other (call it B1) is mapped onto B2.

(b) The ramification indices at s1 of the two mappings

A1 → A2 B1 → B2

induced by f are equal.

If f , as above, is equi-ramified at s1, we let the ramification index ef (s1)
of f at s1 be the common ramification index of the two mappings A1 → A2

and B1 → B2.

Definition 4 The mapping f is said to be admissible if it is a finite morphism
of admissible models, as above, which is equi-ramified at every point s1 of
X1/k such that f(s1) is a singular point in X2/k.

We thank Bas Edixhoven for providing us with a proof of the following
Proposition.

Proposition 5 Let
f : X1/O → X2/O

be a finite morphism between admissible models. Then f is an admissible
morphism. If the schemes X1/O and X2/O are regular, then f is finite and
flat; moreover, for s1 any closed point of X1/k such that s2 = f(s1) is a
singular point of X2/k, the ramification index ef (s1) is 1 (i.e., f is unramified
at s1).

Proof . Without loss of generality, we may assume that k = k. Let s1 be a
closed point of X1/k such that s2 = f(s1) is a double point. For i = 1, 2,
let Ri denote the completed local rings of the schemes Xi/O at si. Then the
rings Ri are of the form

R1 = A[[x, y]](xy − za), R2 = A[[u, v]]/(uv − zb),



where A is a complete discrete valuation ring, z is a uniformizer of A, and a,
b are positive integers. The morphism f induces a morphism ϕ : R2 → R1 of
A-algebras which makes R1 a finite R2-algebra. Let Zx, Zy denote the irre-
ducible components of Spec R1/zR1 defined as the reduced subschemes with
support x = 0 and y = 0, respectively. Interchanging x and y, if necessary,
we may suppose that f maps Zx and Zy to the branches of Spec R2/zR2 cut
out by u = 0 and v = 0, respectively. In particular, ϕ(u) is a unit at the
generic point of Zy and ϕ(v) is a unit at the generic point of Zx.

Form the complete regular local ring R = A[[s, t]]/(st− z). Map the ring
R1 to R by sending x to sa and y to ta and send R2 to R by composing
ϕ with this homomorphism R1 → R. The homomorphisms of Ri to R are
injections. The ring R is a unique factorization domain, and the factorization
of z is given by z = st (s and t being irreducible elements). Since uv = zb

(= sb · tb in R), and since ϕ(u) is a unit at the generic point of Zy, the
unique factorization of the image ũ of u in R is given by ũ = α̃ · sc where α̃
is a unit of R, and c is a positive integer. For the same reason, the unique
factorization of the image ṽ of v in R is given by ṽ = β̃ · td for β̃ a unit of
R and d a positive integer. It follows that α̃β̃ = 1 and c = d = b. Now let
Os, Ot denote the discrete valuation rings which are the localizations at the
generic points of the irreducible components s = 0 and t = 0, respectively,
in Spec R. Let Ox, Oy, Ou, Ov be the analogously defined discrete valuation
rings for x, y, u and v. Their residue fields are respectively k((t)), k((s)) and
k((y)), k((x)), k((v)), k((u)), where k is A/zA, the residue field of A. All six
of these discrete valuation rings have z ∈ A as uniformizer. Therefore, the
extensions

Ou ⊂ Ox ⊂ Os, Ov ⊂ Oy ⊂ Ot

have degrees equal to the degrees of the corresponding residue field extensions

k((u)) ⊂ k((x)) ⊂ k((s)), k((v)) ⊂ k((y)) ⊂ k((t)).

In view of the two equalities

[k((s)) : k((u))] = [k((s)) : k((x))] · [k((x)) : k((u))],

[k((t)) : k((v))] = [k((t)) : k((y))] · [k((y)) : k((v))],

we have b = a · n, where n is the (common) degree

n = [k((x)) : k((u))] = [k((y)) : k((v))].

Hence α̃ · x̃n = ũ and α̃−1 · ỹn = ṽ, giving that

ϕ(u) = α · xn and ϕ(v) = α−1yn,



for α a suitable unit in R1. In particular, f is admissible, the ramification
index ef (s1) is equal to n, and we have established the first assertion of the
Proposition.

Suppose now that the schemes Xi/O are regular. Then a = b = 1, and so
n = ef (s1) is also equal to 1. Since f is a finite morphism between regular
(equidimensional) schemes of the same dimension, it follows that f is finite
and flat; for a proof of this, see [14], Notes added in proof, pp. 507–508. �

Proposition 6 Let M and N be positive integers such that M divides N
and N is relatively prime to p. Then the natural mapping

Xo(Np)/Zp
→ Xo(Mp)/Zp

,

composed, before and after, with any automorphisms of the domain and
range Zp-schemes, is an admissible morphism of admissible schemes.

Proof . We will prove (and make use of) a more general assertion. Let H1

and H2 be subgroups of GL(2,Z/NZ) with H1 ⊆ H2, and let H1̃ and H2̃ be
their inverse images in GL(2, Ẑ). Let Xo(p; H1̃)/Zp

and Xo(p; H2̃)/Zp
be the

corresponding modular curves, as in Example 1 above. Consider the natural
projection

Xo(p; H1̃)/Zp
→ Xo(p; H2̃)/Zp

,

and let h be a composition of this map with automorphisms of the source
and target Zp-schemes. Then we have

Proposition 7 The mapping h is admissible.

Proof . By the discussion in Example 1 above, the domain and range of h
are admissible schemes over Zp. The morphism h being finite, Proposition 5
implies the statement of our Proposition. �

3 The graph S

Let X/O be admissible, and denote by Z/k → X/k the normalization of the
special fiber. Thus Z/k is a disjoint union of smooth projective curves over k.
By the graph of our model, we mean the usual graph S (or S(k) to emphasize
its dependence on the choice of an algebraic closure, k) of its special fiber. In
other words, the set of vertices of S(k) is the set of irreducible components



of X/k (or equivalently, of Z/k) and the set of edges of S(k) is Sing(X/k), the
set of singular points of X/k. The incidence relations are the evident ones,

i.e., inverse-inclusion, and the graph S(k) is endowed with a natural action
of Gal(k/k).

By H1(S, W ) we mean the singular (first) homology group of the graph S,
with coefficients in an abelian group W . We may view H1(S, W ) explicitly
as follows (cf. [13], IX 12.3.5). The oriented edges of the graph S(k) are
in 1-1 correspondence with points s on Z/k which lie over singular points
s ∈ Sing(X/k). Since each s is an ordinary double point, there are two
oriented edges lying over each singular point s. A 1-chain with values in W
is a formal sum

∑
ws · s where the summation is taken over oriented edges,

the coefficients are drawn from W , and we have ws = −ws′ whenever s and
s′ are the two oriented edges lying over a given s ∈ Sing(X/k). For each s,
let A(s) be the irreducible component of Z/k containing s, and set

∂(
∑

ws · s) : =
∑

ws · A(s),

where the right-hand sum is considered as formal sum, with coefficients in
W , on the set of components of Z/k. The group H1(S, W ) is then the sub-
group of the group of 1-chains consisting of those 1-chains

∑
ws · s which are

annihilated by ∂. This condition means that for each irreducible component
A we have

∑
ws = 0, where the summation is taken over all oriented edges s

which correspond to points lying on A.
We shall view H1(S, k) = H1(S(k),Fp)⊗ k as a Gal(k/k)-module via the

diagonal action.
Let f : X1/O → X2/O be an admissible mapping. Let Zi/k → Xi/k be

the normalizations of the special fibers of the domain and range of f and let
Si(k) denote the associated graphs (i = 1 and 2). The mapping f induces a
map on special fibers Z1 → Z2 over k and a Gal(k/k)-equivariant mapping
of graphs S1 → S2. This latter mapping is surjective on vertices and edges;
it collapses an edge of S1 if and only if the corresponding singular point x1 of
X1/k maps to a smooth point of X2/k. For each abelian group W , we define

f∗ : H1(S1, W ) → H1(S2, W )

to be the map on homology which is induced by this equivariant mapping.
Further, we define

f ∗ : H1(S2, W ) → H1(S1, W )

by defining f ∗ on oriented edges as follows: f ∗(s2) =
∑

ef (s1) · s1, where the
summation is taken over all oriented edges s1 of the special fiber of X1 which



map, via f , to the oriented edge s2 of the special fiber of X2. Here, ef (s1)
is the ramification index of the unoriented edge s1 (i.e., the unoriented edge
“underlying” s1). It is straightforward to check that f ∗ so defined brings
1-cycles to 1-cycles, i.e., induces a mapping f ∗ : H1(S2, W ) → H1(S1, W ),
and that f ∗f∗ is given by multiplication by deg(f).

In what follows, we will concentrate on the Gal(k/k)-equivariant map-
pings f∗: H1(S1, k) → H1(S2, k) and f ∗: H1(S2, k) → H1(S1, k) on homology.

Proposition 8 The homotopy type of the graph S is functorially dependent
only upon X/K and not upon the choice of admissible model X/O.

Proof . The essential fact used in the demonstration of this proposition is
that any two (admissible) models X/O and X ′

/O of the same curve X/K are
commensurable via blow-ups at points on the special fiber [15, 39]. This
being the case, one must show that the homotopy type of S is independent
of such blow-ups, which is straightforward. �

4 Pico(X/O)

Let X/O be admissible, and let X̃/O → X/O be its canonical desingularization.
Let Pico be the functor which is studied by Raynaud in [27]. Since X has
rational singularities, the induced morphism of functors

Pico(X/O) → Pico(X̃/O)

is an isomorphism. Indeed, this can be seen by a computation of the mapping
on tangent spaces induced by the above morphism using the Leray spectral
sequence for the mapping ϕ : X̃ → X, and relative coherent cohomology over
O. More precisely, since ϕ is the “blowing down” morphism of a rational
singularity, one calculates:

Lemma 1 We have

Rqϕ∗OX̃ =
{

0 for q > 0,
OX for q = 0. �

Since the functor Pico(X̃/O) is representable by a smooth group scheme
overO, so is Pico(X/O). We refer to the group scheme representing Pico(X/O)
simply as Pico(X/O).



Let A/O denote the Néron model over the base O of the abelian va-
riety A = Pico(X/K). (The recent publication [5] may be consulted as a
source book on Néron models. It contains, in particular, a detailed dis-
cussion of Néron models of Jacobians of curves.) By Raynaud’s theorem
(for statements, compare: [24] Chap. 2 Prop. 1, [9] Theorem 2.5, [13] IX
12.1 and [27]), which applies to X̃/O since X̃/O is a regular surface with re-
duced special fiber, the natural homomorphism of group schemes over O,
Pico(X/O) → A/O identifies Pico(X/O) with the open subgroup scheme Ao

/O
(the connected component containing the identity) of A/O. We have natural
morphisms

f∗ : Pico(X1/K) → Pico(X2/K)

f ∗ : Pico(X2/K) → Pico(X1/K)
(2)

since f is finite and flat on generic fibers. From (2), and functoriality of the
Néron model we obtain direct and inverse image mappings

f∗ : A1/O → A2/O

f ∗ : A2/O → A1/O

(3)

which by restriction to connected components and the identification de-
scribed above yield:

f∗ : Pico(X1/O) → Pico(X2/O)

f ∗ : Pico(X2/O) → Pico(X1/O).
(4)

By restriction to the closed fiber, we have morphisms

f∗ : Pico(X1/k) → Pico(X2/k)

f ∗ : Pico(X2/k) → Pico(X1/k),
(5)

In (2)–(5), the composition f ∗f∗ of direct and inverse image mappings is
given by multiplication by deg(f). Moreover, the inverse image mapping in
(5) is the natural pullback morphism.

5 Semi-stable filtrations

Let X/O be admissible. We shall recall and compare the standard filtrations
on (a) the special fiber A/k and (b) the p-divisible group associated to the
generic fiber A/K .



(a) As for the special fiber A/k, we have the three-stage filtration:

0 ⊂ (A/k)
t ⊂ (A/k)

o ⊂ A/k, (6)

where the superscripts o and t refer to “connected component containing the
identity” and “toric part,” respectively.

Denote by T/k the toric part (A/k)
t and let J/k be the abelian variety

(A/k)
o/T/k. We have already remarked in §4 above that Pico(X/k) is isomor-

phic to (A/k)
o by Raynaud’s theorem. The natural normalization mapping

Z/k → X/k induces a mapping ϕ : Pico(X/k) → Pico(Z/k), which is a sur-
jective mapping of group schemes over k. The kernel of ϕ can be identified
with the subfunctor of Pico(X/k) whose k-valued points are given by isomor-
phism classes of line bundles on X/k which are trivial on each irreducible
component of X/k. Since Pico(Z/k) is an abelian variety and since, from the
above description, ker ϕ is seen to be a torus whose character group may be
naturally identified with H1(S(k),Z) (cf. [13], IX, 12.3.7), we have:

Proposition 9 The abelian variety Pico(Z/k) may be identified (via ϕ)
with J/k, the abelian variety part of Pico(X/k) while T/k, the toric part of
Pico(X/k), may be identified with ker ϕ, whose character group is canonically
isomorphic to H1(S(k),Z). �

It follows from this that the Néron model A/O is semi-stable.

(b) As for the semi-stable filtration on p-divisible groups over K, let Ap/K

denote the p-divisible group (over K) attached to the abelian variety A/K .
We have the filtration of p-divisible groups over K:

0 ⊂ At
p ⊂ Af

p ⊂ Ap (7)

in which At
p denotes the maximal p-divisible subgroup of Ap over K which

extends to the p-divisible group associated to a torus over O, and where Af
p

is the maximal p-divisible subgroup of Ap/K which extends to a p-divisible

group over O (cf. [13] IX §5 and especially Raynaud’s result quoted there
(Thm. 5.8)). By a result of Tate [42], if there is an extension of a p-divisible
group over K to O, then that extension is unique (up to canonical isomor-
phism). Let, then, Af

p/O and At
p/O denote the unique extensions of Af

p and

At
p, respectively, to O.

By ([13] IX 5.2) the filtration (7) is self-dual in the sense that in the
natural (Cartier) self-duality on the Gal(K/K)-module Ta(Ap(K)), the sub-
modules Ta(At

p(K)) and Ta(Af
p(K)) are the annihilator subspaces of each

other, where Ta denotes “Tate module.”



Proposition 10 There are canonical morphisms

(i) Af
p/O → A/O

(ii) At
p/O → Af

p/O,

where (i) is a morphism in the evident sense (i.e., a direct limit of compatible
morphisms on the kernels of multiplication by pn in the p-divisible group over
O, as n goes to infinity) extending the natural morphisms on the generic fiber,
and where (ii) is an embedding of p-divisible groups over O extending the
natural embedding on the generic fiber.

Proof . The existence of the morphism (i) is a direct consequence of Raynaud
([13] IX 5.8). To see that (ii) is an embedding, note that the dual of At

p/O
is etale, and is consequently a (faithfully flat) quotient of the “etale quotient
group” of Af

p/O. The result then follows easily by dualizing. �

Starting with the morphism (i) of Proposition 10, we first pass to the spe-
cial fiber, and then note that the resulting morphism factors through (A/k)

o

and hence through its associated p-divisible group. We obtain therefore a
morphism

Af
p/k

→ (A/k)
o
p.(iii)

of p-divisible groups over k.

Proposition 11 The above morphism is an isomorphism, and it identifies
the p-divisible subgroup At

p/k
of Af

p/k
with (A/k)

t
p ⊂ (A/k)

o
p.

Proof . This is the content of the isomorphisms (7.3.1)–(7.3.4) of [13]. �

Returning to the filtration (7) of p-divisible group schemes over K, and
letting the “suffix” [pn] denote kernel of multiplication by pn, we have the
filtration

0 ⊂ At
p[p

n] ⊂ Af
p[p

n] ⊂ Ap[p
n] (8)

of finite (etale) group schemes over K. The Weil pairing [ , ] defines a perfect
(alternating) self-duality

Ap[p
n]× Ap[p

n] → µpn

with values in the scheme-theoretic kernel µpn of multiplication by pn in the
multiplicative group Gm. The filtration (8) is auto-dual with respect to this
pairing, in the sense that At

p[p
n] and Af

p[p
n] are each other’s annihilators.

This follows from a simple argument using ([13] IX 5.2.2 or Prop. 5.6).



Corollary Let W denote the module defined by the exact sequence

0 → Af
p[p](K) → Ap[p](K) → W → 0.

Choose an algebraic closure K/K compatible with the choice of algebraic
closure k/k of the residue field, giving a surjection

ι : Gal(K/K) → Gal(k/k).

Use ι to endow the Fp[Gal(k/k)]-module H1(S(k),Fp) with an action of
the Galois group Gal(K/K). Once K and ι are fixed, there is a canonical
isomorphism of Fp[Gal(K/K)]-modules,

W ≈ H1(S(k),Fp).

In particular, the action of Gal(K/K) on W is unramified.

Proof . This is a straightforward calculation using the duality statement
above combined with Proposition 9. (Cf. [13], IX, §11.6.) �

6 Rosenlicht differentials

Let X/O be admissible, and let Z/k → X/k be the normalization mapping of
its special fiber. If s ∈ X(k) is a singular point, denote by s1, s2 ∈ Z(k) the
two points in its pre-image. If k′ is a subfield of k, a Rosenlicht differential
on an open subscheme U of X/k′ is a rational differential 1-form ω on V ,
the pre-image of U in Z/k′ , such that ω is regular on the complement in V
of the pre-image of the singular locus of U and such that ω has, at worst,
simple poles on the pre-image points s1, s2 ∈ V (k) of each singular point
s in U(k) ⊂ X(k) and such that ω has residues of opposite sign at these
pre-image points:

ress1 ω = − ress2 ω. (9)

The assignment
U 7→ Rosenlicht differentials on U

defines a coherent sheaf on X/k, which we denote simply Ω or ΩX/k
.

Remark . The reader might compare the above definition with ([33] bottom
of page 177 and Theorem 8) and also ([35] Chapter IV, §3, no9), where the
notion of regular differential is defined on singular curves. Specifically, if



X is a complete singular (reduced) algebraic curve, a regular differential on
X is defined to be a regular differential ω (in the ordinary sense) on the
normalization X ′ of X, which has the property that∑

s′→s

ress′(g · ω) = 0.

Here, s is any k-valued point of X, s′ ranges over all points of X ′ lying over
s, and g is an arbitrary rational function on X ′ which is regular at all points
lying over s.

A global Rosenlicht differential ω on X/k defines a simplicial 1-cycle with

coefficients in k on the graph S(k) in an evident manner. Indeed, let

cω : =
∑

ress ω · s,

where the sum runs over all points on Z/k lying over some singular point of
X/k. In view of (9), the sum cω is a 1-chain in the sense of §3. Moreover, this
1-chain is visibly a 1-cycle (i.e., satisfies ∂(cω) = 0) because the sum of the
residues of ω over all points in any irreducible component vanishes. Passing
to the homology class of the cycle cω, we obtain a map

h : H0(X/k, Ω) → H1(S(k), k).

This map is Gal(k/k)-equivariant because of the formula

σ(ress ω) = resσs(σω), (10)

valid for σ ∈ Gal(k/k), ω ∈ H0(X/k, Ω), and s a k-valued point on Z.

Proposition 12 The map h: ω 7→ cω is a surjection

H0(X/k, Ω) → H1(S(k), k)

whose kernel may be identified with H0(Z/k, Ω
1). We have, in other words,

a Gal(k/k)-equivariant exact sequence:

0 → H0(Z/k, Ω
1) → H0(X/k, Ω)

h→ H1(S(k), k) → 0.

Proof . Left-exactness of the sequence in the statement of the Proposition
is immediate. The surjectivity of h follows from a general fact: given any
finite set S of points on a smooth projective curve over k, and any mapping
r : S → k such that the sum

∑
s∈S r(s) vanishes, there is a 1-differential ω on

the curve with at worst simple poles on S as singularities and such that for
each s ∈ S we have ress(ω) = r(s). �



Corollary Let k′ be an extension of k in k, and let G′ = Gal(k/k′). Then
we have an exact sequence

0 → H0(Z/k′ , Ω
1) → H0(X/k′ , Ω) → H1(S(k), k)G′ → 0. (11)

Proof . Taking G′-invariants in the exact sequence of Proposition 12, we ob-
tain (11). Indeed, it is well known that the 1-dimensional cohomology of
G′ with values in the k-vector space H0(Z/k, Ω

1) vanishes (Hilbert’s Theo-
rem 90). �

Now let f : X1/O → X2/O be an admissible mapping. Then we have a
series of induced “direct” and “inverse” image mappings f∗, f ∗ which fit into
a diagram

0 → H0(Z1/k, Ω
1) → H0(X1/k, Ω) → H1(S1(k), k) → 0

f ∗ ↑↓ f∗ f ∗ ↑↓ f∗ f ∗ ↑↓ f∗

0 → H0(Z2/k, Ω
1) → H0(X2/k, Ω) → H1(S2(k), k) → 0.

(12)

The definition of f ∗ and f∗ on regular differentials on Z1/k and Z2/k is given
in the standard local manner, the definition of f∗ being the usual trace con-
struction on differentials using flatness of the morphism Z1/k → Z2/k. To
check that the trace mapping (which is defined a priori on rational differen-
tial 1-forms) extends to regular and to Rosenlicht differentials, we may use
the characterization of Rosenlicht differentials which is given in the above
Remark, together with the local calculation∑

s′ 7→s

ress′(ω) = ress(TraceZ1/Z2(ω))

for ω any rational differential 1-form on Z1/k and for s′ ranging through all
points of Z1/k lying over a point s of Z2/k. (Compare: [35], Chapter II, no12,
Lemma 4; or [2] Chapter VIII (3.7) and (4.4).)

The definition of f ∗ and f∗ on the homology of the graphs is as given
in §3.

Proposition 13 The above diagram (12) is commutative.

Proof . Commutativity of the square(s) on the left is immediate. As for
those on the right, it is a direct calculation, where in the case of commuta-
tivity involving f∗ one uses the fact that ress(f∗ω) = f∗(

∑
ress′ ω), where the

summation is over all s′ in Z1 mapping to s in Z2. �



7 Regular differentials on X/O

Let X/O be admissible, and let X̃/O be its canonical desingularization. The

smooth loci Y/O and Ỹ/O of the O-schemes X/O and X̃/O are open subschemes
consisting in the complements of the closed (finite) subschemes of ordinary
double points in the special fibers of X/O and X̃/O, respectively. Let Ω1

Ỹ/O

denote the coherent sheaf of (relative) Kähler differentials on the smooth
O-scheme Ỹ/O. Since X̃ is regular, the complement of Ỹ in X̃ consists in
closed points of depth 2, and therefore the coherent sheaf Ω1

Ỹ/O
has a unique

extension (the direct image) to an invertible coherent sheaf on X̃, which we
shall call ΩX̃/O

.

Definition 5 Let X/O be admissible. Let ϕ : X̃/O → X/O be the canonical
desingularization. By the sheaf ΩX/O we mean the direct image ϕ∗ΩX̃/O

.

The sheaf ΩX̃/O
may be seen to be the relative dualizing sheaf of the

O-scheme X̃, and, as a consequence of this, together with the fact that
ϕ : X̃ → X consists in blowing up rational isolated singularities, one sees
that ΩX/O is an invertible OX-module, and is the relative dualizing sheaf of
the O-scheme X. Further, we have:

Lemma 2 The natural mappings

i : ΩX̃/O
→ ϕ∗ΩX/O , j : ϕ∗ΩX̃/O

→ ΩX/O

are isomorphisms. �

Remark. It would be good to have a concise and complete reference for
Duality Theory tailored to admissible models and, in particular, to modular
curves over rings of integers in number fields. Lacking such a reference, we
suggest [10] and [20] II 3 for a discussion of these issues, and especially [15]
Chapter IV §4 for a more complete discussion, with some proofs.

Next, if f : X1/O → X2/O is an admissible mapping, we have “direct” and
“inverse” image mappings f∗, f ∗ connecting Ω1

Ỹ1/O
and Ω1

Ỹ2/O
. These extend

uniquely to Ω1
X̃1/O

and Ω1
X̃2/O

, since the schemes X̃i/O are regular and the

subschemes Ỹi/O are the complements in X̃i/O of points of codimension 2.
Using Lemma 2, one constructs “direct” and “inverse” image mappings f∗
and f ∗ connecting ΩX1/O and ΩX2/O .



Proposition 14 (i) Let X/O be admissible. There is a natural isomorphism
of coherent sheaves over X/k:

ΩX/O ⊗ k ≈ ΩX/k
.

(ii) If f : X1/O → X2/O is an admissible mapping, then the direct and in-
verse image mappings f∗, f ∗ are compatible, in an evident sense, with the
isomorphisms of (i) above for X1 and X2.

Proof . Part (i) is seen by local calculations where we distinguish the case
of a neighborhood of a smooth point for the morphism f and that of a
neighborhood of an ordinary double point of the fiber of f . Once (i) is
established, (ii) follows easily. �

Now suppose that X/O is admissible, and let Cot(A/O) denote the cotan-
gent space at the zero-section of the Néron model A/O. If f : X1/O → X2/O
is an admissible mapping, let

f∗ : Cot(A1/O) → Cot(A2/O)

be the mapping induced by f ∗ : A2/O → A1/O, and define f ∗ on Cot(A2/O)
similarly.

Proposition 15 There is a natural identification

H0(X, ΩX/O) ≈ Cot(A/O)

which is compatible with f ∗ and f∗ whenever f : X1/O → X2/O is an admis-
sible mapping.

Proof . This is standard. See the discussion in [21] §2 (e). �

8 Admissible correspondences

Let Xi/O (i = 0, 1, 2) be admissible, and let
X0

↙ ↘
X1 X2

be a diagram of

admissible mappings fi : X0 → Xi (i = 1, 2). Referring to such an ordered
pair of admissible morphisms (f1, f2) by the single letter f , we call f an ad-
missible correspondence. We think of f as a generalized admissible mapping



X1  X2. Set f∗ : = f2∗f1
∗ and f ∗ : = f1∗f2

∗, so that we have direct and
inverse image mappings defined for the same panoply of instances that they
have been defined, in the case of admissible mappings. If f is an admissible
correspondence corresponding to the ordered pair (f1, f2), its adjoint is the
admissible correspondence f ′ obtained by reversing the order, i.e., by using
(f2, f1) in place of (f1, f2). Clearly, f ′∗ = f ∗ and f ′∗ = f∗.

Let X/O be admissible. A commutative subring

R ⊂ End(A/K)

will be called admissible if it is generated by the direct and inverse image

mappings f∗ and g∗ coming from admissible correspondences
X0

↙ ↘
X X

(with no a priori restriction on the admissible models X0/O which may ap-
pear). By replacing correspondences by their adjoints, we may require in the
definition that R be generated exclusively by inverse image or direct image
mappings.

Proposition 16 For each T ∈ R, there are associated endomorphisms T∗
and T ∗ on each of the following: A/K , A/O, A/k, H0(X, Ω), H0(Z, Ω1), and
H1(S, k). For fixed T ∈ R, the families of maps (T∗) and (T ∗) are each
compatible with the morphisms listed in Propositions 13–15.

Proof . This is immediate from the statements of those Propositions. �

In the discussion which follows, we will be concerned principally with the
maps (T∗). We use the phrase “covariant action” to suggest that T acts as
T∗ on a given object.

9 Local admissible data

For simplicity, we now suppose that k = Fp. Let X/O be an admissible model
of its generic fiber X. We preserve much of the previous notation. Thus, for
example, we let Z/k be the normalization of the special fiber X/k of X/O. In
addition, we shall let Φ be the group of components of A/k. We view Φ as a
finite abelian group furnished with an action of Gal(k/k) ([13], IX, §11).

Let R be a commutative subring of End(A/K) generated by admissible
correspondences. Then R operates by functoriality on A/k and thereby (co-
variantly) on the component group Φ and the abelian variety PicoZ. We let



R be the image of R in End(PicoZ). We consider the covariant action of R
on H0(X/k, Ω).

Suppose that p ⊂ R is a maximal ideal of residual characteristic p. Let
F = R/p be the residue field of R. We say that the triple {X/O, R, p} is local
admissible data if the following axioms are satisfied:

I. The image of p in R is the unit ideal of R.

II. The F -vector space H0(X/k, Ω)[p] has dimension ≤ 1.

III. If p = 2, then p does not belong to the support of the R-module Φ.

Remark. To anticipate the application of our theory, it might help if we
dropped these hints: We will be working in the context where K = Qp, and
X is a classical modular curve. Axiom I will follow since p will correspond
to a p-newform, and since Z “involves” only forms of lower p-level, p can
have no support in H0(Z, Ω1). Axiom II will follow from a version of the
“q-expansion principle.” Axiom III results from the fact that the component
group Φ is known to be “Eisenstein” in the situation we encounter [31]. Hence
a prime p of R can belong to the support of Φ only if the associated Galois
representation is reducible.

Proposition 17 Let {X/O, R, p} be local admissible data. Let W be the
module introduced in the Corollary to Proposition 11. Then

dimF W [p] ≤ 1.

Proof . By the Corollary to Proposition 11, it is equivalent to prove that

dimF H1(S(k),Fp)[p] ≤ 1.

By the Corollary to Proposition 12, and by Axiom I, we have for each k′ an
isomorphism

H0(X/k′ , Ω)[p] ≈ H1(S(k), k)
Gal(k/k′)

[p].

Consider this isomorphism in the case where k′ = k = Fp, and let G =
Gal(k/Fp). The proposition follows from the following lemma, in which we
have put Y : = H1(S(k),Fp).

Lemma 3 We have dimF Y [p] = dimF (Y ⊗Fp k)G[p].



Proof . One first shows that the natural inclusion

Y [p]⊗Fp k ⊂ (Y ⊗Fp k)[p]

is an isomorphism (e.g., by proving this with k replaced by any finite subfield
k′, via a dimension count over Fp, and then passing to k by direct limit).
Since passage to the submodule of G-invariants commutes with passage to
the kernel of p, we get that the natural inclusion

(Y [p]⊗Fp k)
G ⊂ (Y ⊗Fp k)

G
[p]

is also an isomorphism. This reduces us to the case where Y = Y [p]. In this
case, the equality to be proved,

dimFp Y = dimFp (Y ⊗Fp k)
G
,

is evident. �

10 Global admissible data

We now let X/Q be a smooth projective curve over Q, and denote by A/Z

the Néron model of its Jacobian over the base Z. Let R be a subring of
endomorphisms of A/Q defined over Q (equivalently, a subring of End(A/Z)).
Let p ⊂ R be a maximal ideal of residual characteristic p. Let F be the
residue field of p, as in §8. Let X/Qp denote the base extension of X/Q to
Qp. Let O = Zp and let X/O be an admissible model of X/Qp over the base
Zp. We shall say that {X/Q, X/O, R, p} is globally admissible data if:

(a) It is locally admissible; i.e., {X/O, R, p} is locally admissible in the sense
of §9, and,

(b) The F [Gal(Q/Q)]-module A/Q[p](Q) has a Jordan-Hölder filtration all
of whose successive quotients are isomorphic to one absolutely irre-
ducible F [Gal(Q/Q)]-module V for which dimF V = 2.

Proposition 18 (“dimension two”) Assume that

{X/Q, X/O, R, p}

is globally admissible. Then A/Q[p](Q) is an F -vector space of dimension
two.



Proof . Let U denote the F [Gal(Q/Q)]-module A/Q[p](Q). Then U is non-
zero because R acts faithfully on A. By property (b) above, all minimal
F [Gal(Q/Q)]-submodules of U are isomorphic to V . Choose one such sub-
module, and identify it with V ; this gives us an inclusion V ⊂ U .

Let dimF U = 2N , so that U possesses an F [Gal(Q/Q)]-stable Jordan-
Hölder filtration of N stages, each of whose “successive quotients” is isomor-
phic, as F [Gal(Q/Q)]-module, to V . We must prove that N = 1.

Fix an embedding Q ↪→ Qp; use it to identify U = A/Q[p](Q) with

A/Qp [p](Qp). Via this identification, U and its submodule V inherit filtrations

(as F [Gal(Qp/Qp)]-modules) from the filtration (8), made with n = 1:

0 ⊂ U t ⊂ U f ⊂ U,
0 ⊂ V t ⊂ V f ⊂ V.

Axiom I of §9 (coupled with Propositions 9 and 11) proves that U t = U f and
therefore that V t = V f . Further, since U/U t = U/U f embeds in the module
W [p] of the previous §, and since, by Proposition 17, W [p] is of F -dimension
≤ 1, the codimension c of U t in U is at most 1.

The inertia subgroup I of Gal(Qp/Qp) acts trivially on U/U t and as the
mod p cyclotomic character χ on U t. Hence the semisimplification of U as
an I-module is the sum of c copies of the trivial representation and 2N − c
copies of the 1-dimensional representation corresponding to χ. Meanwhile,
this semisimplification is the sum of N copies of the semisimplification of V .

Assume now that p is an odd prime. Then χ is non-trivial, and we see
that either N = 1 or else U = U t. We will eliminate the latter possibility,
using the assumption that p is odd.

For this, we note first that the entire p-divisible group Ap(Q) ⊗R Rp =⋃
A[pi](Qp) lies in the toric part At

p of the p-divisible group of A. Indeed,
suppose that A[pi] lies in Ap[p

n]. Then, by Axiom I, to say that A[pi] is
contained in At

p[p
n] is to say that it is contained in Af

p[p
n]. If not, then

A[pi] maps non-trivially to Ap[p
n]/Af

p[p
n], which is unramified, whereas the

assumption U = U t implies easily that A[pi] has no unramified quotient.
(One uses the standard fact that A[pi]/A[pi−1] maps injectively to a direct
sum of copies of U , cf. [20], II, §14.)

We then conclude by using an argument due to Serre (compare [24],
Chap. III §7). Let Γ be the Qp-adic Tate module associated to Ap(Q)⊗R Rp,
and let Λ denote its hth exterior power where h is the dimension of Γ. Let
Λ(−h) be the twist of Λ by the −hth power of the p-adic cyclotomic character
of Gal(Q/Q). Then Λ(−h) is unramified at p, so that Gal(Q/Q) acts on
Λ(−h) via a character of finite order. Hence the eigenvalues of Frobenius



elements ϕ` on Λ (where ` 6= p is any prime of good reduction for A) are
of the form `hζ, where ζ is a root of unity. These eigenvalues thus have
archimedean absolute values `h. However, the eigenvalues of ϕ` on Γ all have
absolute values `1/2, which is a contradiction.

We now consider the case p = 2. Then, by Axiom III, the maximal
ideal p does not belong to the support of Φ. Using this information, but
making no further use of the assumption p = 2, we shall establish that U t

has dimension ≤ 1. Since its codimension is also bounded from above by 1,
we get that U has dimension at most 2, so that N = 1 as desired.

Let X denote temporarily the character group HomFp
(At

/k,Gm) of the

maximal torus in the reduction of A. Then U t = Hom(X/pX , µp(Qp)).
Hence the F -dimension of U t is that of X/pX . If Y is the analogue of X for
the reduction of the dual of A (so that Y and X are in fact isomorphic), then
the monodromy pairing of SGA7I furnishes an exact sequence

0 → Y → Hom(X ,Z) → Φ → 0.

By considering the maps “multiplication by p” on the groups in this sequence,
and by using the Snake Lemma, we find a 4-term exact sequence

0 → Φ[p] → W → Hom(X/pX ,Fp) → Φ/pΦ → 0,

since W is canonically Y/pY . If we localize at p, the two terms involving Φ
disappear, because of Axiom III. Hence, localizing and then performing the
operation “[p]” gives an isomorphism

W [p] ≈ Hom(X/pX ,Fp).

In view of Proposition 17, the dimension of the right-hand side is ≤ 1, as
claimed. �

11 Modular curves and Hecke operators

Let N be an integer prime to p, and let M = pN . Let X be the complete
modular curve Xo(M)/Q, which is associated with the subgroup Γo(M) of
PSL(2,Z). We will be working with this curve and its canonical model
over Z[1/N ]. As we intimated in the Introduction, however, one could work
equally well with the curve X(N, p) attached to the subgroup Γ1(N)∩Γo(p)

of Γo(pN). This subgroup is defined by matrices
(

a b
c d

)
which satisfy the



additional congruence a ≡ d ≡ 1 (mod N). These two cases could be treated
simultaneously by the introduction of a curve which lies between X(N, p)
and X in the natural covering X(N, p) → X.

As we recalled in our introductory comments, the curve X is furnished
with a standard Hecke correspondence Tn for each integer n ≥ 1; the cor-
respondence T` is frequently called U` when ` is a prime number divid-
ing pN . The correspondences Tn induce endomorphisms of the Jacobian
Jo(pN) = Pico(X) of X, which are again denoted Tn. (We use the conven-
tion which was explained in §3 of [30]. Thus, the endomorphism Tn is the
transpose of the endomorphism ξn which is defined in Chapter 7 of [41].) Let
w = wp be the Atkin-Lehner involution of X relative to the prime p, and
write again w for the involution of Jo(pN) induced by this operator.

Also, recall [21] that there are two degeneracy maps

α = δ1, β = δp : X →→ Xo(N).

These correspond respectively to the modular operations

(E, CN , Cp) 7→ (E, CN), (E, CN , Cp) 7→ (E/Cp, (CN + Cp)/Cp),

where CN and Cp denote cyclic subgroups of orders N and p on an elliptic
curve E. These degeneracy maps induce maps α∗, β∗ : Jo(pN) →→ Jo(N) and
α∗, β∗ : Jo(N) →→ Jo(pN). The maps α∗ and β∗ each identify Jo(N) with an
abelian subvariety of Jo(pN).

Consider now the following three closely related commutative subrings of
End(Jo(pN)):

· S = the subring generated by the Tn with n prime to p,

· T = TpN = the subring generated by the Tn for all n,

· R = the ring generated by S and w.

We have T = S[Tp] = S[Up] and R = S[w]. All three rings are finitely
generated as Z-modules, since End(Jo(pN)) is of finite rank over Z.

We say that maximal ideals p ⊂ R and m ⊂ T are compatible if their in-
tersections with S coincide. By the “going-up” theorem of Cohen-Seidenberg,
there is always at least one maximal ideal m or p compatible with a given p

or m.
Next, let S be the “p-old quotient” of S, defined (for instance) as the

quotient of S cut out by Jo(N), viewed as an abelian subvariety of Jo(pN).



In other words, we identify Jo(N) with its image in Jo(pN) under α∗, and
observe that this image is stable under Tn for all n prime to p. The subring of
End(Jo(N)) generated by these Tn is then the quotient S of S. (Alternatively,
S may be defined as the image of S in R, where R is defined as in §9, cf. [30],
3.11.) Note that S is a subring of the Hecke algebra TN , which is the subring
of End(Jo(N)) generated by all the Hecke operators Tn at level N . Thus TN

is the ring generated by S and the Hecke operator Tp at level N .
We call a maximal ideal mo of S strongly p-new , or simply strongly new,

if it is not the inverse image in S of a maximal ideal of S. Thus, “strongly
p-new” means “not p-old.” A maximal ideal m ⊂ T or p ⊂ R is defined to
be strongly (p-)new if its intersection with S is strongly new.

Proposition 19 Let m be a maximal ideal of TpN . Assume that ρm is
an irreducible representation which is not modular of level N . Then m is
strongly p-new.

Proof . Let mo = m ∩ S. Assume that m is not strongly p-new, so that mo is
the inverse image of a maximal ideal I of S. The residue field of I is then
the quotient S/mo, which is a subfield of TpN/m. Let J be a maximal ideal
of TN lying over I, and consider the representation ρJ . For almost all prime
numbers r, we have

trace(ρm(σr)) = Tr mod mo = trace(ρJ(σr)),

det(ρm(σr)) = r mod m = det(ρJ(σr)),

the equalities holding in the common subfield S/mo of TpN/m and TN/J .
(Here, σr is a Frobenius element for r in Gal(Q/Q).) By the Cebotarev
density theorem, the representations ρm and ρJ are isomorphic in the sense
that they both arise by base change from the same two-dimensional repre-
sentation of Gal(Q/Q) over S/mo. This contradicts the assumption that ρm

is not modular of level N . �

Proposition 20 Let m be a maximal ideal of T which is strongly p-new.
Then R acts on Jo(pN)[m](Q) via a surjective homomorphism R → T/m.

Proof . The endomorphism Tp+w of Jo(pN) maps Jo(pN) into the subvariety
α∗(Jo(N)) of Jo(pN) (cf. [30], proof of Proposition 3.7). In particular, Tp +w
maps Jo(pN)[m] into Jo(N)∩Jo(pN)[mo], where mo is the intersection S∩m.
The group Jo(N) ∩ Jo(pN)[mo] is killed by the image of mo in S, which



is the unit ideal of S by hypothesis. Hence Jo(N) ∩ Jo(pN)[mo] = 0, so
that Tp = −w on Jo(pN)[m]. All generators of R now act on Jo(pN)[m]
as elements of T, since T` ∈ R acts as T` ∈ T, for ` 6= p. The result now
follows; in particular, the action of R on Jo(pN)[m](Q) is given by a surjective
homomorphism because each generator of T/m is, up to sign, the image of
a generator of R. �

Corollary Assume that m is strongly p-new. Then we have

Jo(pN)[m](Q) ⊆ Jo(pN)[p](Q),

for some maximal ideal p of R which is compatible with m and whose residue
field is isomorphic to that of m. �

12 Admissible data coming from modular curves

We continue the discussion of §11, retaining the notation. In addition, we
let X/Z[1/N ] denote the canonical model of the modular curve X = X/Q, as
in [10], [14], or [24]. Let O = Zp, and let X/O denote the base change of
X/Z[1/N ] to O.

Proposition 21 The model X/O is admissible, and the ring R is an admis-
sible subring of End(Jo(pN)).

Proof . That X/O is an admissible model follows from the discussion of Ex-
ample 1 of § 2. The scheme-theoretic definitions given in ([24], Chapter 2,
§5) of the correspondences defining the T` (for ` not dividing pN) and the
U` (for ` dividing N) show that these correspondences are determined by
diagrams

X ′
/O

↙ ↘
X/O X/O

where the oblique arrows are morphisms of the type given in Proposition 6. It
follows from that Proposition that the correspondences T` (for ` not dividing
pN) and U` (for ` dividing N) are admissible. The map wp, in the other
hand, extends to an automorphism of X/O, so its admissibility again follows
from Proposition 6. �

The scheme-theoretic definition of the correspondence Up (as in [24],
Chapter 2, §5) does not exhibit Up as an admissible correspondence. How-
ever, Up behaves as the negative of w on the representation spaces which



interest us, cf. Proposition 20 and its corollary. Thus, Up is “morally” an
element of the ring R.

Now let p ⊂ R be a maximal ideal whose residue field F is of characteristic
p. As we recalled in the Introduction (in discussing maximal ideals of T),
one can attach to p a two-dimensional semi-simple Galois representation

ρp : Gal(Q/Q) → GL(2, F ).

This representation is unramified at primes not dividing pN and enjoys the
following property: Let ` be a prime number not dividing pN , and let ϕ` ∈
Gal(Q/Q) be a Frobenius element for the prime `. Then the characteristic
polynomial of ρp(ϕ`) is X2 − a`X + `, where a` is the image in F = R/p of
the Hecke operator T` ∈ R. This representation visibly depends only on the
intersection p ∩ S; it coincides with ρm for any m ⊂ T which is compatible
with p.

We say that p is of absolutely irreducible type if the associated represen-
tation ρp is absolutely irreducible. By working with a complex conjugation
in Gal(Q/Q), one sees when p > 2 that ρp is absolutely irreducible if and
only if it is irreducible over F .

Proposition 22 Let p be a prime number and N an integer not divisible
by p. Let X/Q, X/O, and R be as above. Let p be a maximal ideal in R
of residual characteristic p, which is strongly p-new of absolutely irreducible
type. Then {X/Q, X/O, R, p} is globally admissible.

Proof . Since p is strongly p-new one sees immediately that Axiom I (in the
definition of “local admissible data,” §9) holds for {X/O, R, p}. Indeed, R
acts on H0(Z, Ω1) through its quotient R.

To establish Axiom II, we shall make use of “q-expansion principle” tech-
niques, very similar to those used in ([24], Chap. 2 §10). The work of Deligne-
Rapoport [10] implies that X/k is as depicted on page 177 of [20]. In particu-
lar, two components of X/k are copies of the modular curve Xo(N); we shall
refer to these below as the “good components.” The remaining components, if
any, are projective lines arising from supersingular points of Xo(N)/k (which
are represented by elliptic curves plus subgroups of order N) with “extra
automorphisms.” We refer to these components as the “possible P1’s.”

To prove Axiom II, we must bound the dimension of the F -vector space
H0(X/k, Ω)[p]. Let k′ be a subfield of k. A Rosenlicht differential ω in the
k′⊗k F -module H0(X/k′ , Ω)[p] is uniquely determined by its restriction to the



good component containing the cusp ∞. Indeed, the restriction of ω to the
good component containing ∞ determines it on the other good component
as well (the action of wp permutes the two good components and takes ω to
ω times the image of wp in F ). Further, its restriction to the “possible P1’s”
is also determined since we know its residues by virtue of the fact that ω is
a Rosenlicht differential. Thus ω is entirely determined by its q-expansion at
the cusp ∞, since it is standard that this q-expansion determines ω on the
good component containing ∞.

Let F ′ be a finite field extension of F , and suppose that we are given
a Rosenlicht differential ω on X/k with the property that when viewed as
Rosenlicht differential over F ′, it is an eigenvector for the operators in R.
Say that λn is the eigenvalue of Tn acting on ω (for each integer n prime
to p) and that −λp = ±1 is the eigenvalue of wp acting on ω. We need to
show that ω is determined by its eigenvalues up to multiplication by a scalar
in F ′. (Cf. Propositions 9.2 and 9.3 of [20], Chapter II.)

Consider the q-expansion f = a1q
1 + a2q

2 + . . . of ω. We will show
that all an are determined by a1 and the λ’s. A familiar argument (cf. [24]
Chap. 2 §10) proves that the coefficients an for n prime to p are determined
by a1. Indeed, since the coefficient of q in the expansion of ω|Tn is an, we
have an = λna1 for each n prime to p. To control the coefficients an with n
divisible by p, we shall establish the complementary formula anp = λpan for
n ≥ 1.

Consider the Cartier operator C ([34], §10) on the space H0(Xo(N)/k, Ω
1).

(Compare the discussion in [24] Chap. 2 §10.) Think of Xo(N) as the good
component containing ∞, and write simply ω for the restriction of ω to this
component. Let σ denote the Frobenius automorphism of k. The differential
σ(Cω) has q-expansion

∑
n

anpq
n, and it will suffice to show that σ(Cω) is the

negative of the restriction to Xo(N) of wpω.
At each supersingular point s of Xo(N)/k, the residue of wpω is − ress(p) ω,

since wp permutes the two good components and induces the Frobenius map
(p) (an involution) on the set of singular points of X/k. On the other hand,
we have the formula

σ(ress(Cω)) = ress(p) σ(Cω),

cf. (10). The left-hand side of this equation, however, represents the residue
at s of ω, in view of equation (33) of [34]. [The exponent (p) was incorrectly
placed on the left-hand side of this latter equation in the initial printing of
[34]. The equation was reprinted correctly, with the exponent on the right-
hand side, in Serre’s Œuvres.] Hence wpω +σ(Cω) is a differential of the first



kind on Xo(N)/k. However, it is clear that this differential is annihilated
by the intersection mo of m and the subring S of R. By the definition of
“strongly p-new,” we see that wpω + σ(Cω) = 0.

We now come to Axiom III. This follows from Theorem 2 of [31], which
proves that the component group Φ is “Eisenstein.” Indeed, if the mod p
Galois representation associated with a prime p is irreducible, p cannot in-
tervene in the support of a module which is Eisenstein (cf. [30], Th. 5.2c). (It
is perhaps worth pointing out that no information about the residue charac-
teristic of p is used.)

We have therefore established that {X/O, R, p} is locally admissible. To
see that {X/Q, X/O, R, p} constitutes global admissible data we need only
check condition (b) of §10. This follows from the argument in the proof
of Proposition 14.2 of [20]. To give the bearest hint: the Eichler-Shimura
relations, and the Cebotarev Density Theorem guarantee that the charac-
teristic polynomials of the action of elements of Gal(Q/Q) on the F -vector
space Jo(pN)/Q[p] are the same as on a direct sum of a number of copies of V .
The Brauer-Nesbitt theorem then provides the existence of an F [Gal(Q/Q)]-
Jordan-Hölder filtration whose successive quotients are isomorphic to V . [Al-
ternatively, we could now apply the main theorem of [6], which guarantees
that Jo(pN)/Q[p] is a direct sum of copies of V .] �

We now can prove the Main Theorem which appears in the Introduction.
We repeat it here as

Theorem 1 Let p be a prime number and N an integer not divisible by
p. Let m be a maximal ideal in TpN of residue characteristic p, which is
of absolutely irreducible type and such that ρm is not modular of level N .
Then Jo(pN)(Q)[m] is a vector space of dimension two over TpN/m, and the
representation ρm is equivalent to the natural representation of Gal(Q/Q)
on Jo(pN)(Q)[m].

Proof . Let p be chosen as in the Corollary to Proposition 20. By that
Corollary, it suffices to prove that Jo(pN)(Q)[p] is of dimension two. This
result follows from Proposition 18, in view of Propositions 21, 19, and 22. �

13 Higher multiplicities

In this §, we construct kernels Jo(M)[m] with multiplicities µm > 1. In our
examples, M is divisible by p3, and the representation ρm is modular of level
M/p2.



Let p be a prime number, and let N be a positive integer prime to p.
For each ν, let αν : Xo(p

ν+1N) → Xo(p
νN) be the degeneracy covering

with the modular interpretation (E, C) 7→ (E, C[pνN ]), where C denotes
a cyclic subgroup of order pν+1N in an elliptic curve E. Let βν be the
“other” degeneracy covering Xo(p

ν+1N) → Xo(p
νN); it has the modular

interpretation (E, C) 7→ (E/C[p], C/C[p]). The degeneracy coverings αν , βν

have degree p if ν ≥ 1, and degree p + 1 when ν = 0. (In §11, we introduced
the degeneracy coverings α = α0 and β = β0.) They induce maps

αν∗, βν∗ : Jo(p
ν+1N) →→ Jo(p

νN), α∗ν , β
∗
ν : Jo(p

νN) →→ Jo(p
ν+1N)

via the two functorialities of the Jacobian. Since neither covering αν , βν

factors through a non-trivial unramified abelian covering Z → Xo(p
νN), the

maps α∗ν and β∗ν are injective. Correspondingly, their duals αν∗ and βν∗ are
surjective, with connected kernels.

Let α′ν and β′ν denote the transposes of αν and βν , viewed as correspon-
dences. (We regard α′ν and β′ν as generalized maps Xo(p

νN) Xo(p
ν+1N).)

We have the formulas α′ν∗ = α∗ν , and β′ν∗ = β∗ν . The Hecke correspondence
Tp on Xo(p

νN) is defined as the composition αν ◦ β′ν . Accordingly, we have
the formula T ′p = βν ◦ α′ν for the transpose of Tp. One may check that this
Hecke correspondence has the familiar modular description

(E, C) 7→
∑
D

(E/D, (C ⊕D)/D),

in which the sum runs over subgroups of E having order p whose intersection
with C is trivial. From this description, we obtain for ν ≥ 1 the formulas

αν ◦ Tp = Tp ◦ αν , βν ◦ Tp = p · αν .

The Hecke operator Tp on the left-hand side of each equation is a self corre-
spondence of Xo(p

ν+1N), whereas the Tp on the right-hand side of the first
equation is a self-correspondence of Xo(p

νN). Finally, consider the Hecke op-
erator Tp and the Atkin-Lehner involution wp on the modular curve Xo(pN).
As we recalled above in our proof of Proposition 20, the sum Tp + wp is the
correspondence β′0 ◦ α0 of degree p + 1 (cf. [30], Prop. 3.7).

Fix ν ≥ 1. For each n ≥ 1, write, as usual, Tn for the nth Hecke operator
on Jo(p

νN), i.e., the pullback to Jo(p
νN) = Pico(Xo(p

νN)) of the Hecke
correspondence Tn on Xo(p

νN). Similarly, write wp for the involution of
Jo(p

νN) induced by the Atkin-Lehner involution of Xo(p
νN). Also, write T∨n

for the “dual” of Tn, i.e., the pullback of T ′n to Jo(p
νN).



Take ν = 1, and let m ⊂ TpN be a maximal ideal of residue characteristic
p for which the associated representation ρm of Gal(Q/Q) is: (1) absolutely
irreducible and, (2) not modular of level N = M/p. Let V = Jo(pN)[m],
which is a priori a successive extension of some number µm ≥ 1 of copies of
ρm. Our main theorem states that the multiplicity µm of ρm in V is 1; however,
we shall not make use of this fact. Since ρm is not modular of level N , we have
α0∗(V ) = β0∗(V ) = 0. Because of the formula Tp + wp = α∗0 ◦ β0∗, wp is the
scalar −Tp on V . Similarly, wp = −T∨p on V . We deduce, first, that Tp = ±1
on V , and secondly that T∨p = Tp on V . Therefore, TpT

∨
p = T∨p Tp = 1 on V .

Let γ : Jo(pN)2 → Jo(p
2N) be the composition of the product α∗1 × β∗1

and the “sum” map on Jo(p
2N). Thus, symbolically,

γ(x, y) = α∗1(x) + β∗1(y).

Lemma 4 The map β∗2 ◦ γ : Jo(pN)2 → Jo(p
3N) induces an injection

V × V ↪→ Jo(p
3N).

Proof . Let δ : Jo(p
2N) → Jo(pN)2 be the map given by the symbolic for-

mula t 7→ (α1∗(t), β1∗(t)). The composition δ ◦ γ is the endomorphism of

Jo(pN)2 represented by the matrix
(

p Tp

T∨p p

)
(or its transpose, depending

on conventions). The restriction of this composition to V × V is thus the

automorphism
(

0 ±1
±1 0

)
of V × V . Accordingly, the restriction of γ to

V × V is injective. The lemma now follows, since β∗2 : Jo(p
2N) → Jo(p

3N) is
injective. �

The Hecke ring TpN acts on V via a tautological character TpN → k,
where k is the residue field of m. For each n ≥ 1, let an be the image
of Tn under this character, i.e., Tn mod m. Let W denote the image of
V × V in Jo(p

3N) under β∗2 ◦ γ. For all n ≥ 1 with (n, p) = 1, the Hecke
operator Tn ∈ Tp3N acts on W by the homothety an. In view of the formula
Tp◦β∗2 = pα∗2, and the fact that p = 0 on W , we see that Tn = 0 on W for all n
divisible by p. Thus the action of Tp3N on W is given by the homomorphism
ϕ : Tp3N → k which is determined by:

ϕ(Tn) =
{

an for (n, p) = 1,
0 for n divisible by p.

This homomorphism is in fact surjective, since ap = ±1.



LetM be the kernel of ϕ. Then ϕ identifies the residue field ofM with the
residue field k of m. Moreover, the k-representations ρm and ρM of Gal(Q/Q)
are isomorphic, by the Cebotarev Density Theorem. Now W ⊆ Jo(p

3N)[M],
and the dimension of W over k = Tp3N/M is 2µm. Hence the multiplicity
µM of ρM in Jo(p

3N)[M] satisfies µM ≥ 2µm.
Summing up, we get

Theorem 2 Let N be a positive integer prime to p, and let m ⊆ TpN be
an ideal of residue characteristic p. Assume that the representation ρm is
absolutely irreducible and that ρm is not modular of level N . Then there is
a homomorphism Tp3N → TpN/m taking Tn ∈ Tp3N to Tn mod m for all n
prime to p. IfM is the kernel of this homomorphism, then ρm has multiplicity
greater than 1 in the kernel Jo(p

3N)[M]. More precisely, the representations
ρM and ρm are canonically isomorphic, and Jo(p

3N)[M] contains a product
of two copies of ρm.

To make a concrete example of a maximal ideal m as in the Theorem, take
p = 11 and N = 1. The ring T11 is isomorphic to Z, and there is a unique
ideal m = (11) of residue characteristic p. The associated representation ρm

is the two-dimensional representation Jo(11)[11] of Gal(Q/Q) over F11. This
representation is known to be absolutely irreducible; indeed, the associated
map Gal(Q/Q) → Aut(Jo(11)[11]) is surjective [40].
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tiques. Lecture Notes in Math. 349, 143–316 (1973)

[11] Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Sci.
Ecole Norm. Sup. 7, 507–530 (1974)

[12] Gross, B.: A tameness criterion for Galois representations associated
to modular forms (mod p). Duke Math. J. 61 (1990). To appear

[13] Grothendieck, A.: Groupes de monodromie en géométrie algébrique
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[27] Raynaud, M.: Spécialisation du foncteur de Picard. Publ. Math.
IHES 38, 27–76 (1970)

[28] Ribet, K.: Galois representations attached to eigenforms with Neben-
typus. Lecture Notes in Math. 601, 17–52 (1977)

[29] Ribet, K.: Congruence relations between modular forms. Proc. In-
ternational Congress of Mathematicians 1983, 503–514

[30] Ribet, K.: On modular representations of Gal(Q/Q) arising from
modular forms. Invent. Math. 100, 431–476 (1990)

[31] Ribet, K.: On the Component Groups and the Shimura Subgroup of
Jo(N). Sém. Th. Nombres, Université Bordeaux, 1987–88, exposé 6
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