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1. Introduction

Much has been written about component groups of Néron models of Jacobians
of modular curves. In a variety of contexts, these groups have been shown to
be “Eisenstein,” which implies that they can be neglected in the study of irreducible
two-dimensional representations of Gal(Q/Q).

The first theorem to this effect may be extracted from Mazur’s landmark article
[11], which concerns the Jacobian J0(N) when N is a prime. In this article, Mazur
studies the action of Hecke operators on the “cuspidal subgroup” of the Jacobian,
and obtains information about the relevant component group as an application [11,
p. 98]. More precisely, consider the fiber in characteristic N of the Néron model
of J0(N). This commutative group scheme is an extension of a finite étale group
scheme Φ by an algebraic torus; one is interested in the functorial action of Hecke
operators on Φ. Mazur proves for all prime numbers p 6= N that the pth Hecke
operator Tp acts on Φ by multiplication by 1 + p, and also that TN is the identity
on Φ. The “Eisenstein” terminology arises from the fact that 1 + p is the pth
coefficient of the standard Eisenstein series of weight two on Γ0(N).

In his first article on Serre’s conjectures [13], the author generalized Mazur’s
result to the Jacobian J0(N) where N is the product of a positive integer M and
a prime number q prime to M . According to Theorem 3.12 of [13], one again
has the identity Tp = 1 + p for all prime numbers p prime to N on the group of
connected components of the Néron reduction J0(N)/Fq

. (A slightly more refined
statement appears as Theorem 3.22 of [13]; for the proof, see [14].) Subsequently,
B. Edixhoven showed in [6] that an analogous result holds for every reduction
J0(N)/Fq

with q > 3; here, the new element is that N is allowed to be divisible by
an arbitrary power of q.

In another article on Serre’s conjectures [15], the author discusses the component
group Φ attached to the mod q reduction of the Jacobian of the modular curve
derived from Γ1(N) ∩ Γ0(q); here N is a positive integer and q is a prime number
not dividing N . The analysis of [15], pp. 672–673 proves the identity Tp = 1+p on Φ
for all prime numbers p |/ qN and establishes at the same time that the “diamond
bracket” operators 〈d〉 act as the identity on Φ.
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thank B. Edixhoven, H. W. Lenstra, Jr., D. Lorenzini, N. Skoruppa, D. Ulmer, and A. Wilkinson
for helpful correspondence and suggestions. We also thank the International Scientific Committee
and the local organizers of the Hong Kong conference on Fermat’s Last Theorem for their generous
invitation.
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In this article, we consider the situation in which Γ1(N) is replaced by a subgroup
Γ intermediate between Γ0(N) and Γ1(N). In other words, we study the component
group ΦΓ associated to the mod q reduction coming from Γ∩Γ0(q). (We continue to
assume that q is prime to N .) Since ΦΓ is Eisenstein in the two extreme situations
Γ = Γ0(N) and Γ = Γ1(N), it is natural to ask whether ΦΓ is Eisenstein for
intermediate groups.

In order to rule out trivial counterexamples, we will generalize slightly our defi-
nition of “Eisenstein.” Let S be the complex vector space of weight-two cusp forms
on Γ ∩ Γ0(q), and let T̃ be the subring of EndS generated by the Hecke operators
Tn and 〈d〉 for n a prime number prime to qN and d prime to N . As we shall recall
below, there is a natural action of these operators on ΦΓ. We shall be interested in
the set of maximal ideals m of T̃ which lie in the support of ΦΓ as a T̃-module, i.e.,
the set of maximal ideals in the image of T̃ in End ΦΓ.

To each m, one associates as usual a continuous semisimple representation

ρm : Gal(Q/Q) → GL(2, T̃/m).

This representation is characterized up to isomorphism by the fact that the trace
of ρm(Frobp) is Tp mod m and the determinant of this matrix is p〈p〉 mod m, for
all but finitely many prime numbers p. (Here, Frobp is an arithmetic Frobenius
element for p in Gal(Q/Q). See, e.g., [15, §7] for some of the relevant background.)
It is worth stressing that ΦΓ gives rise through this construction to a collection of
two-dimensional representations of Gal(Q/Q), despite the fact there is no natural
action of Gal(Q/Q) on the group ΦΓ.

We shall say that ΦΓ is Eisenstein if all m in the support of ΦΓ give rise to
representations ρm which are reducible. We say that ΦΓ is strongly Eisenstein if the
operators 〈d〉 are trivial on ΦΓ and one has Tp = 1+p on ΦΓ for all but finitely many
prime numbers p. It is easy to show that “strongly Eisenstein” implies “Eisenstein”
by using the Cebotarev Density Theorem and the Brauer-Nesbitt Theorem [13,
5.2c].

To be sure, one’s guess that ΦΓ is Eisenstein turns out to be not very far off
the mark. Indeed, ΦΓ is strongly Eisenstein in most cases, and the prime-to-6 part
of ΦΓ is strongly Eisenstein in all cases. Nonetheless, the blanket assertion that
ΦΓ is Eisenstein is definitely false. To convince the reader of this fact, we exhibit
in the next section some non-Eisenstein component groups; our construction is a
digression which is intended to motivate the more systematic study which follows.

This article’s main contribution is an analysis of ΦΓ in the case of general Γ
and q. As we indicated above, the `-primary parts of ΦΓ are strongly Eisenstein
(and cyclic as abelian groups) for all prime numbers ` ≥ 5. After recalling this
simple result, we investigate the 2-primary and the 3-primary components of ΦΓ.
In case ΦΓ is non-Eisenstein, we identify the non-Eisenstein “pieces” and describe
on these pieces the action of the Hecke operators Tn and 〈d〉.

From the point of view of Galois representations, our main result is the identifica-
tion of all irreducible representations with values in GL(2,F2) and GL(2,F3) that
can be associated with component groups. These are induced representations, com-
ing from certain characters Gal(Q/Q(

√−1)) → F
∗
2 and Gal(Q/Q(

√−3)) → F
∗
3,

respectively. For a character θ to intervene in some component group, it is neces-
sary and sufficient that all residue classes modulo its conductor be represented by
rational integers.
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This article is an outgrowth of the author’s talks at the Hong Kong conference on
Fermat’s Last Theorem. These talks outlined portions of A. Wiles’s manuscript [20].
This manuscript provides ample motivation for a detailed analysis of mod 3 repre-
sentations of Gal(Q/Q) which arise from modular forms. Indeed, Wiles’s attack on
the Taniyama-Shimura conjecture begins with a theorem of J. Tunnell [19] which
implies that the mod 3 representation of Gal(Q/Q) arising from an elliptic curve
over Q is associated to some Hecke eigenform. Assuming that this mod 3 repre-
sentation is irreducible, one shows that the eigenform may be chosen in accordance
with the conjectures of [16]. For this, attention must be directed to the special
problems posed by mod 3 representations; see F. Diamond’s article in this vol-
ume [5], which provides an update on Serre’s conjectures. In reflecting on mod 3
representations, the author was forced to abandon his “axiom” that component
groups are Eisenstein; this led to the study which is presented below.

2. Some non-Eisenstein component groups

Consider the irreducible continuous representation ρ : Gal(Q/Q) → GL(2,F3) aris-
ing from the space of forms of weight two on Γ1(13). This space has dimension two,
and the two Hecke eigenforms in the space are complex conjugates of each other.
Their coefficients lie in the ring of integers of Q(

√−3); ρ is the mod (
√−3) rep-

resentation of Gal(Q/Q) associated with either of them. The determinant of ρ is
the product of the mod 3 cyclotomic character of Gal(Q/Q) and the character of
order two which corresponds to the quadratic extension Q(

√
13) of Q. Let H be

the group of squares in (Z/13Z)∗. Then conjecture (3.2.4?) of Serre’s article [16]
predicts that ρ should arise from a Hecke eigenform in the space of weight-two cusp
forms on the group

Γ = ΓH(13) :=
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0 mod 13, d ∈ H

}
.

However, as Serre pointed out in a letter to the author [17], this space of forms is
zero the conjecture is false as stated.

One way to deal with this apparent difficulty is to reformulate Serre’s conjecture
as a relation between mod p Galois representations and mod p modular forms
in the sense of Katz [9]. Such a reformulation is presented as Conjecture 4.2 of
Edixhoven’s article [7], which attributes the reformulation to Serre. The characters
which appear in the conjecture are then naturally F

∗
p-valued, and the difficulty

becomes invisible. On the other hand, this solution hides a problem that may be
genuinely of interest, since one wants to characterize those spaces of forms which
give rise to a given Galois representation.

One certainly knows that problems of the sort exemplified by ρ occur only for
mod 2 and mod 3 representations of Gal(Q/Q). Further, among all mod 3 repre-
sentations, only those which become abelian on Gal(Q/Q(

√−3)) can give trouble,
cf. [2, p. 796]. Finally, let q > 2 be a prime number which is congruent to 2 mod-
ulo 3. Then the difficulty in the case of ρ “disappears” when the level is augmented
by an auxiliary Γ0(q) structure: Lemme 1 of [2] implies that ρ arises from the space
of weight-two cusp forms on Γ ∩ Γ0(q). (The author is grateful to N. Skoruppa for
undertaking a numerical verification of this assertion when q = 5.)

Let J be the Jacobian of the modular curve over Q associated with Γ ∩ Γ0(q).
(We again write J for the Néron model of this abelian variety.) As above, we let
ΦΓ be the component group associated with the reduction of J mod q.
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Theorem 1. The group ΦΓ is non-Eisenstein.

Proof. Let V be a two-dimensional F3-vector space affording the representation ρ,
and for each r |/ 13q let ar ∈ F3 be the trace of ρ(Frobr), where Frobr is a Frobenius
element for r in Gal(Q/Q). The fact that ρ arises from Γ∩Γ0(q) implies that there
is a Gal(Q/Q)-equivariant embedding V ↪→ J(Q) with the following property:
For each prime number r |/ 13q, the endomorphism Tr of J acts on V as the
homothety ar. Since q is prime to 39, V is unramified at q. Thus (after choosing a
place of Q lying over q), we may view V as embedded in J/Fq

(Fq).
We claim now that V does not land entirely in the connected component Jo

/Fq

of J/Fq
. In other words, we assert that the image W of V in the group of connected

components of J/Fq
is non-trivial. Since the group of connected components in

question is none other than ΦΓ, our claim implies that ΦΓ contains a non-zero
subgroup of exponent 3 on which each Hecke operator Tr acts as ar. That the
ar are traces of an irreducible representation indicates that this subgroup is non-
Eisenstein, thereby proving the Theorem.

The claim concerning V is proved by an appeal to results of Deligne-Rapoport
[4] and general theorems of Grothendieck and Raynaud. This body of work is
summarized in [12], [13, §2], [15, §8], and the discussion which occurs in §3 below.
The main point is that by using [4, Th. 6.9, p. 286], one sees that Jo

/Fq
is a certain

extension of an abelian variety by a torus. The abelian variety in question appears
as the product of two copies of the Jacobian of the modular curve associated with
the group Γ. However, this modular curve has genus zero, so its Jacobian is zero.
Thus Jo

/Fq
coincides with its “toric part” T . Therefore, the statement that V falls

entirely in Jo
/Fq

(Fq) is the statement that V is a subgroup of T (Fq). The argument
given at the conclusion of [15, §8] shows that the inclusion V ↪→ T (Fq) is possible
only when q ≡ 1 mod 3; the choice of q thus guarantees that W is non-zero. This
proves the claim. ¤

3. A concrete description of ΦΓ

In this section, we present a nuts-and-bolts description of ΦΓ as an abelian group
furnished with a family of Hecke operators Tr and 〈d〉. This material is now quite
well known, at least in the case where Γ = Γ0(N) [1, 12].

Let N be a positive integer. Subgroups Γ between Γ1(N) and Γ0(N) are in 1-1
correspondence with subgroups of (Z/NZ)∗. Let H be such a subgroup, and set

Γ = ΓH(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0 mod N, d ∈ H

}
.

Thus Γ = Γ1(N) in case H is the trivial subgroup of (Z/NZ)∗, while Γ = Γ0(N)
if H = (Z/NZ)∗. The modular curve corresponding to Γ will be called XH(N);
thus, XH(N) is the quotient of X1(N) by the image of H in the Galois group
(Z/NZ)∗/{±1} of the covering X1(N) → X0(N). Postponing the assumption that
q is prime, we let q be a positive integer prime to N , and put

Γ(H, q) = ΓH(N) ∩ Γ0(q).

(A more precise, but less compact, name for this group would have been ΓH(N, q))
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The modular curve X(H, q) corresponding to Γ(H, q) is the quotient of X1(Nq)
by the image of H × (Z/qZ)∗ in (Z/NqZ)∗/{±1}. This image is unchanged if we
augment H by {±1}; thus we can, and will, assume that H contains −1. (If N ≤ 2,
we have −1 = +1 in (Z/NZ)∗, and we are imposing no condition on H.) We view
X(H, q) as classifying elliptic curves E which are furnished with a subgroup C of
order q and a point P of order N . In the classification, the point P is considered
“mod H” in the sense that the triples (E, C, P ) and (E,C, hP ) are identified for all
h ∈ H. (Compare [4, IV, §3].) The orbit of P mod H will be called αP ; we will say
that X(H, q) classifies triples (E, C, α) where α is a point of order N on E which
is taken “mod H.”

Define JH(N) and J(H, q) to be the Jacobians of the modular curves XH(N)
and X(H, q), respectively.

From now on, we assume that q is a prime number. For convenience, we impose
the assumption q ≥ 5 at this point. (The cases q = 2 and q = 3 presumably
could be included with little modification in what follows.) Consider the reduction
of J(H, q) modulo q. The group of components associated with this reduction is
the group ΦΓ in the discussion above; of course, this group depends on q as well as
on Γ.

A description of ΦΓ can be deduced in a standard way from the theorem of
Deligne and Rapoport which we cited above [4, Th. 6.9, p. 286]. The theorem
provides a model C of X(H, q) over Zq which is an “admissible curve” in the sense
of [8, §3] and [13, §2]. The special fiber of C has two irreducible components, each
isomorphic to the modular curve XH(N).

The set of singular points of CFq
is in bijection with the set S of supersingular

Fq-valued points of XH(N), i.e., those points which arise from pairs (E, P ) where E

is a supersingular elliptic curve over Fq and P is a point of order N on E. To each
s ∈ S we associate an integer e(s) ∈ {1, 2, 3} in the following way: If s is represented
by the pair (E, P ), then 2e(s) is the number of automorphisms of E which map P to
some point hP with h ∈ H; in other words, 2e(s) is the number of automorphisms
of (E, αP ). (Because −1 belongs to H, the automorphism “−1” of E induces an
automorphism of (E, αP ). The number of such automorphisms is then 2, 4, or 6
because we have assumed q ≥ 5.) The singular point of C corresponding to s is
then described in C by the local equation XY = qe(s).

Consider now the diagonal pairing on ZS for which 〈s, s〉 is the positive integer
e(s). Let L be the group of degree 0 elements in ZS , and let ι : L ↪→ Hom(L,Z)
be the linear map which describes the restriction of this pairing to L. The follow-
ing result is a consequence of the theorem of Deligne and Rapoport and work of
Grothendieck and Raynaud. (See [12], and perhaps the discussion in [13, p. 438].)

Theorem 2. The component group ΦΓ may be identified with the cokernel of ι.

One understands that the identification between ΦΓ and coker ι is compatible with
the functorial actions of Hecke operators and of the Galois group Gal(Fq/Fq). We
shall discuss the Hecke operators.

As usual, Hecke operators act on J(H, q) in two different ways, because the
Jacobian construction is both covariant and contravariant. In what follows we adopt
the contravariant point of view in which J(H, q) is regarded as Pic0(X(H, q)). We
describe the action of Hecke operators on ΦΓ without supplying any substantial
justification. However, the reader may consult [12], which discusses in detail the
special case case where H = (Z/NZ)∗.
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First, let d be an integer prime to N . The association (E, C, P ) 7→ (E,C, dP )
defines a “diamond bracket” automorphism 〈d〉 on X(H, q). Using the contravariant
functoriality, we obtain automorphisms of J(H, q) and then ΦΓ, both of which we
shall call simply 〈d〉. In the description of ΦΓ as the cokernel of an injection
L ↪→ Hom(L,Z), the map 〈d〉 on ΦΓ is induced from two automorphisms of L.
Namely, consider the permutation of S which takes the class of a pair (E, P ) to the
class of (E, dP ). This permutation induces an automorphism 〈d〉L of L, which we
regard as a subgroup of ZS . Let 〈d〉′L be the inverse of this permutation. Then we
have a commutative diagram

0 → L
ι

↪→ Hom(L,Z) → ΦΓ → 0
↓ ↓ ↓

0 → L
ι

↪→ Hom(L,Z) → ΦΓ → 0

in which the three vertical arrows are respectively 〈d〉′L, Hom(〈d〉L,Z) and 〈d〉.
Similarly, suppose that p is a prime number which does not divide qN . The

symbol Tp then denotes a host of objects: the standard Hecke correspondence
Tp on X(H, q), the endomorphism of J(H, q) which this correspondence induces
by contravariant functoriality, and finally the endomorphism Tp of ΦΓ which then
arises from the functoriality of the Néron model. We seek to identify this latter
endomorphism.

Fix p for the moment and let T be the correspondence on S defined by the
rule (E, α) 7→ ∑

(E/D, α mod D), where the sum is taken over the subgroups
D of E having order p. In analogy with the situation above, we write TL for the
induced endomorphism of L ⊂ ZS . The analogue of 〈d〉′L is then the endomorphism
T ′L := 〈p〉−1

L
◦TL. We have a commutative diagram like the one above in which the

three vertical arrows are respectively T ′L, Hom(TL,Z) and the endomorphism Tp

of ΦΓ. Since p may vary in what follows, we restore p to the notation, referring to
the first of these operators as T ′p and the second as Hom(Tp,Z). In other words, we
will permit Tp to denote the endomorphism of L induced from the correspondence
(E, α) 7→ ∑

(E/D,α mod D) on S by Z-linearity.

4. Extra automorphisms

We will now determine those points s ∈ S with e(s) > 1. A point s in S is defined by
a supersingular elliptic curve E over Fq, together with a point P on E of order N .
Write α for the orbit of P under H and C for the subgroup of E generated by P .
Let s be the point on X0(N) defined by (E, C).

Let R be the subring Z[AutE] of End E. If e(s) is different from 1, then AutE is
different from {±1}. Since End(E) is a definite quaternion algebra over Q, Aut E
is different from {±1} if and only if E has an automorphism of order 4 or 6. In
fact, the condition q > 3 implies that the automorphism group of E can only be
cyclic of order 2, order 4, or order 6. Hence R is either Z, or else the integer ring
in an imaginary quadratic field of discriminant −3 or −4. As is well known, E
has an automorphism of order 4 if and only if its j-invariant is 1728. Since E is
supersingular, the prime q must be congruent to 3 mod 4. Similarly, E has an
automorphism of order 3 if and only if its j-invariant is zero; if the curve with this
j-invariant is supersingular, we have q ≡ 2 mod 3. (Compare, for example, [18],
page 103 and pp. 143–144.)
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Suppose that Aut E 6= {±1}. Then (E,C) has a non-trivial automorphism if
and only if Aut E coincides with its subgroup Aut(E, C), i.e., if and only if C is
stable under R. If this condition is satisfied, then the group C is free of rank 1
over R/I, where I is the annihilator of C in R. Since C is cyclic, this puts a
numerical constraint on N : No prime factor of N can remain inert in the ring R,
and the prime which ramifies in R can occur in N only to the first power if it occurs
at all. Further, the inclusion of Z in R induces an identification R/I

∼→ Z/NZ.
Thus the pair (E, C) has a non-trivial automorphism if and only if C is the kernel
on E of an ideal I of R such that R/I is isomorphic to Z/NZ. Thus there is a
1-1 correspondence between cyclic subgroups C of order N which are stable by R
and ideals I of R such that the additive group of R/I is cyclic of order N . One
sees that distinct subgroups C lead to distinct point of X0(N). Indeed, if (E, C)
and (E,C ′) are isomorphic, then the isomorphism between them is induced by an
automorphism of E, which preserves C (and C ′) by the definition of R.

The conjugation map r 7→ r of R induces an an involution on the set of I. This
Atkin-Lehner style involution has no fixed points if N > 3. Indeed, suppose that
I = I. For each r ∈ R, there is an integer n such that r − n lies in I. Since n = n,
r−r belongs to I+I = I. Hence I contains

√−3 or 2, according as the discriminant
of R is −3 or −4. Hence N divides 3 in the former case and N divides 2 in the
latter.

Suppose now that (E, C) has a non-trivial automorphism. Then e(s) > 1 if and
only if Aut(E,α) = Aut(E, C). This equality translates into the statement that

µ
?⊆ H ⊆ (Z/NZ)∗,(∗)

where µ is the image in (R/I)∗ of the unit group of R. This condition involves
only (E, C) and H; hence it applies simultaneously to all points on XH(N) which
lie above the point s on X0(N). One checks that when (∗) is satisfied, the number
of points on XH(N) which lie above s is precisely ((Z/NZ)∗ : H).

In summary, to find those points s ∈ S with e(s) > 1, we first look for the
supersingular points s in X0(N)(Fq) which satisfy the analogous condition e(s) > 1.
Mark off those points (if any) which satisfy the supplementary condition (∗). Above
each marked point, we find ((Z/NZ)∗ : H) points in S with “extra automorphisms.”

The condition (∗) may be true for some points s with e(s) > 1 that arise from
a given supersingular elliptic curve and false for others. For example, suppose that
E has six automorphisms and that N = 7 · 13 = 91. There are four ideals I of R
with R/I ≈ Z/91Z. For two of these ideals, the image of R∗ in (Z/91Z)∗ is the
cyclic group generated by 10; for the other two, the image is generated by 17. If
H is one of these two groups, then (∗) will be satisfied for two of the I, but not
for all. Notice, however, that the set of I for which (∗) is satisfied is stable under
the natural conjugation map on R. Indeed, R∗ is stable under this conjugation.
Furthermore, we have observed that the inequality N > 3 implies that an ideal I
with R/I ≈ Z/NZ can never be its own conjugate. This gives

Lemma 1. Suppose that N ≥ 4. Then the set of points s for which e(s) > 1 and
for which (∗) is satisfied has an even number of elements. In particular, the number
of such points is different from 1.

The case N ≤ 3 does not play an important role in the analysis which follows.
In fact, one has
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Lemma 2. If N ≤ 12 and there is at least one point s with e(s) > 1, then H =
(Z/NZ)∗.

Proof. Assume that N < 13. If e(s) = 3, then there is an ideal I of R = Z[ 1+
√−3
2 ]

with R/I ≈ Z/NZ. This implies that N is 3 or 7. In both cases, R∗ maps onto
(Z/NZ)∗. If e(s) = 2, there is an ideal I of R = Z[

√−1] with R/I ≈ Z/NZ. The
possibilities for N are 2, 5, and 10. Again, R∗ maps onto (Z/NZ)∗ in all cases. ¤

The prime 13 splits both in Z[ 1+
√−3
2 ] and in Z[

√−1]. If R is one of these two
rings, and if I is a prime lying over 13 in R, then the image of R∗ in (Z/13Z)∗

is strictly smaller than (Z/13Z)∗. This circumstance (if not the discussion in §2)
shows that 12 cannot be replaced by a larger integer in the statement of the Lemma.

5. A canonical subgroup of ΦΓ

Let Φ = ΦΓ. We shall discuss a cyclic subgroup Φ0 of Φ which has already been
studied in case Γ = Γ0(N) (see [13] and [12]).

For each element s of S, let ϕs : L → Z be the linear form ` 7→ 〈`, s〉 and let ωs

be the linear form on L ∑
t

ntt 7→ ns.

Clearly, Hom(L,Z) is generated by the ωs, so that Φ is generated by their images
ωs in Φ = Hom(L,Z)/L. One has e(s)ω(s) = ϕs.

The class ϕ of ϕs in Φ = Hom(L,Z)/L is independent of s, since ϕs − ϕt is the
image in Hom(L,Z) of s− t ∈ L, if s, t ∈ S. Let Φ0 be the subgroup of Φ generated
by the canonically given element ϕ. We set

Q = Φ/Φ0.

In view of the formula e(s)ω(s) = ϕs, we have e(s)ωs = ϕ for each s. Hence, as
noted in [13, §2], we have a surjection

⊕

s∈S

(Z/e(s)Z) −→ Q, (as) 7→
∑

s

asωs.

One may view ZS as embedded in Hom(ZS ,Z) via the symmetric bilinear pairing
〈 , 〉 on ZS . Let L⊥ ⊂ Hom(ZS ,Z) be the group of linear forms which vanish on L,
and let U = L⊥∩ZS be group of vectors in ZS which are orthogonal to L under the
pairing. Since Hom(L,Z) = Hom(ZS ,Z)/L⊥, we have Φ = Hom(ZS ,Z)/(L⊕L⊥).
The image of ZS/U in Φ, i.e., the group ZS/(L ⊕ U), is clearly Φ0. (Indeed, the
image of s ∈ ZS in Hom(ZS ,Z) is ϕs.)

Now U is free of rank one over Z; it consists of those multiples of
∑

1
e(s)s ∈ QS

which lie in ZS . Hence U is generated by
∑

m
e(s)s, where m is the least common

multiple of the e(s). (Thus, m divides 6.) It follows that the order of Φ0 =
ZS/(L ⊕ U) is m ·∑ e(s)−1, cf. [12, p. 16]. Also, L⊥/U has order m, since L⊥ is
generated by the element

∑
ωs and since m

∑
ωs =

∑
m

e(s)s in Hom(ZS ,Z).
Consider the commutative diagram with exact rows

0 → L⊥ → Hom(ZS ,Z) → Hom(ZS ,Z)/L⊥ → 0
↑ ↑ ↑

0 → U → ZS → ZS/U → 0
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in which the central vertical map is the inclusion given by 〈 , 〉; the two other
vertical maps are the evident, related inclusions. The cokernels of the vertical
maps form the exact sequence 0 → Z/mZ → ⊕

s∈S(Z/e(s)Z) → Q → 0, where the
map from mZ to the direct sum takes 1 ∈ Z/mZ to the vector (1, . . . , 1). Note
that Q is now seen to have order m−1

∏
e(s). Therefore, we recover the formula(∏

s e(s)
) · (∑s e(s)−1

)
for the order of Φ, cf. [1, Ch. 9, Prop. 10].

Lemma 3. The group Φ0 is strongly Eisenstein. The identities 〈d〉 = 1 and Tp =
1 + p hold on Φ0 for d ∈ (Z/NZ)∗ and p prime to qN .

Proof. We first consider the action of Tp on ϕ. Choose s ∈ S. From the perspective
introduced at the end of §3, we see that the action of Tp on this element of Φ
is derived from the action of Hom(TL,Z) on ϕs ∈ Hom(L,Z). The map ϕs◦TL

is the linear form mapping ` ∈ L to 〈TL`, s〉 = 〈`, T ′Ls〉 = 〈`, 〈p〉−1TLs〉. Since
〈p〉−1TLs is an element of ZS of degree p+1, the image in Φ of ` 7→ 〈`, 〈p〉−1TLs〉 is
(p+1)ϕ. This establishes the first identity. The second is proved by an analogous
computation. ¤
Corollary. The group Φ is Eisenstein in each of the following situations:

(i) e(s) = 1 for all s ∈ S;
(ii) H = (Z/NZ)∗;
(iii) N < 13;
(iv) H = {±1}.
Proof. In the first case, we have Φ0 = Φ, so that the assertion to be proved is that
given by the lemma. The assertion in the second case is given as Theorem 3.12
in [13]. In the third case, we are either in case (i) or case (ii) by Lemma 2. Suppose
now that we are in the fourth case, which corresponds to the equality XH(N) =
X1(N). If N is at least 4, we are in case (i) by [10, Corollary 2.7.4]. If N ≤ 4, then
we are of course in case (iii). ¤

6. The structure of Q

In view of the Corollary above, we will now impose the condition N ≥ 13.

Lemma 4. Suppose that (E, C) represents a supersingular point of X0(N)/Fq
.

Let D be a cyclic subgroup of E(Fq) of order prime to qN . Assume that the
automorphism group of the triple (E, C,D) is larger than {±1}. Then the pair
(E/D, C mod D) is isomorphic to (E, C).

Proof. This statement is proved as Proposition 2 in [14]; we recall the proof for the
convenience of the reader. Let ε be an automorphism of (E, C,D) which is different
from ±1, and let R be the subring of End(E, C,D) which is generated by ε. Thus
R is isomorphic either to the ring of Gaussian integers or to the ring of integers
of Q(

√−3). If J = AnnR(D), then J is a principal ideal (r) of R, and D is the
kernel of J on E. Thus the map “multiplication by r” on E induces an isomorphism
(E/D, (C ⊕D)/D) ∼→ (E,C) as required. ¤

Recall now that Q is generated as an abelian group by the elements ωs with
s ∈ S. Since e(s)ωs = 0, it suffices to consider only those ωs with e(s) > 1.
As we have seen, the inequality e(s) > 1 means that s lies over a supersingular
point s of X0(N)(Fq) which satisfies the numerical condition e(s) > 1 and the
supplementary condition (∗).
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Let s be such a point. Define Qs to be the subgroup of Q generated by the
ωs with s lying over s. Thus Qs is a quotient of the elementary abelian group⊕

(Z/e(s)Z), where the sum is extended over the set of points s lying over s. As
was mentioned above, the number of such points is the index ((Z/NZ)∗ : H). More
precisely, the set of points s is a principal homogeneous space over (Z/NZ)∗/H,
the action of this group being given by the “diamond bracket” operators.

Proposition 1. The group Qs is free of rank ((Z/NZ)∗ : H) over Z/e(s)Z.

Proof. Let S0 be the inverse image of s in S. We must show that the direct sum⊕
s∈S0

(Z/e(s)Z) has trivial intersection with the kernel of the map

⊕

s∈S

(Z/e(s)Z) → Q.

As we have seen, this kernel is the cyclic group generated by the vector (1, . . . , 1)
in the full direct sum. Hence it suffices to check that there is a point s ∈ S \ S0

with e(s) > 1. This follows from Lemma 1, since N ≥ 13. ¤
Proposition 2. The subgroup Qs of Q is stable under the Hecke operators Tp

and 〈d〉.
Proof. Let p be a prime number not dividing qN . As at the end of §3, we write T
for the correspondence on S defined by the formula (E, α) 7→ ∑

(E/D, α mod D).
This correspondence is summarized by the matrix of natural numbers (atu) which
one constructs by writing Tu =

∑
t∈S atu · t for u ∈ S. Recall that the action of

Tp on Φ arises from the action of a map labeled Hom(TL,Z) on Hom(L,Z). This
group is generated by the elements ωs for s ∈ S, and one finds that Hom(TL,Z)
maps ωs to the sum

∑
t∈S astωt.

To prove that Qs is stable under Tp, it suffices to show that ast is divisible by e(t)
whenever s maps to s and t does not. In other words, we wish to show that atu is
divisible by e(u) whenever t and u have distinct images on X0(N).

This divisibility can be established by the method used to prove [13, Th. 3.12].
Indeed, suppose that u is represented by (E, α). Let C be the cyclic subgroup
of order N on E which is associated with α. The group Aut(E,α)/{±1} oper-
ates on the set of cyclic subgroups of E of order p. Clearly, if D and D′ are
such subgroups which are equivalent under this action, then (E/D, α mod D) and
(E/D′, α mod D′) are isomorphic. Moreover, suppose that the cyclic subgroup D
has a non-trivial stabilizer under this action. Then Lemma 4 shows that (E, C)
and (E/D, (C ⊕D)/D) are isomorphic, i.e., that (E, α) and (E/D,α mod D) map
down to the same point on X0(N). Now let t be a point of S whose image on X0(N)
is distinct from that of s. Then the set of D for which (E/D, α mod D) represents t
is a union of copies of the group Aut(E, α)/{±1}, whose cardinality is e(u). Hence
atu is divisible by e(u), as was claimed.

Now let d be an integer prime to N . The action of 〈d〉 on Φ is deduced from
the automorphism Hom(〈d〉L,Z) introduced at the end of §3. This automorphism
maps a given linear form ωs to the linear form ω〈d〉−1s. Here, the automorphism
labeled 〈d〉−1 sends the class of (E,P ) to the class of (E, d−1P ); the quantity d−1

is computed mod N . Since P and d−1P generated the same subgroup of E, it is
clear that 〈d〉 permutes the ωs with s having a given image on X0(N). Therefore,
〈d〉 preserves Qs. ¤
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Let S0 again be the inverse image of s in S. We observed above that the di-
amond bracket operation of (Z/NZ)∗ on S0 makes S0 a principal homogeneous
space over the group ∆ := (Z/NZ)∗/H. Let us identify Qs with the direct sum⊕

s∈S0
(Z/e(s)Z), i.e., with the space of functions from S0 to Z/e(s)Z. Then the

diamond bracket operation discussed in Proposition 2, which involves an inverse,
may be viewed as the natural action coming from the diamond bracket action of ∆
on S0.

Let ` = e(s); thus ` = 2 or ` = 3. Let T = F`[∆] be the group algebra consisting
of sums

∑
δ∈∆ nδ[δ] where the nδ are integers mod `. Since Qs is an F`-vector

space with an action of ∆, Qs may be viewed as a T-module in a natural way.

Lemma 5. The T-module Qs is free of rank one.

Proof. Proposition 1 shows that Qs is an F` vector space of dimension #(∆) =
dimF`

T. Further, it is clear that Qs is a cyclic T-module, since ∆ permutes the
generators ωs of Qs. ¤

Now choose a supersingular elliptic curve E over Fq and a cyclic subgroup C
on E so that the pair (E, C) defines the point s of X0(N). As usual, let R be the
ring Z[Aut E], and let I be the annihilator of C in R. The isomorphism R/I ≈
(Z/NZ)∗ gives a meaning to [r] whenever r ∈ R is prime to I. The element [r]
depends only on the ideal generated by r in R, since H contains the image of R∗

in (Z/NZ)∗.
In fact, this might be a good time to relate ∆ to the Galois group Gal(Q/Q). Let

K be the imaginary quadratic field Q[Aut E] = R ⊗Q. Since all fractional ideals
of K are principal, the quotient of (R/I)∗ by R∗ is the ray class group of K with
conductor I. Via class field theory, this class group corresponds with an abelian
extension L of K. It will be useful to fix an embedding K ↪→ Q and to view L as
a subfield of Q. Since ∆ is then a quotient of Gal(L/K), ∆ becomes the Galois
group of an abelian extension of K in Q. The conductor of this extension divides I.

For each prime p |/ qN , we define an element τp of T by the formula:

τp =





0 if p is inert in R,
[π] + [π′] if p = (π)(π′) is split in R,
[π] if p = (π)2 is ramified in R.

The third case occurs only when p = `.

Theorem 3. For each p |/ qN , the Hecke operator Tp acts on Qs by multiplication
by τp.

Proof. Let (ast) be the Brandt matrix which was introduced in the course of the
proof of Proposition 2. Recall that if t is the isomorphism class of the pair (E,P ),
where P is a point of order N lying in C, then ast is the number of subgroups D
of order p in E such that (E/D, P mod D) defines s. We have seen that ast ≡ 0
mod ` if s and t do not have the same image on X0(N). We must now calculate
ast mod ` in the case where s and t have the same image, namely s.

Suppose first that p is inert in R. Then there is no subgroup of order p in E
which is stable under Aut E. Accordingly, the proof of Proposition 2 shows that
ast is divisible by `, since the group (AutE)/{±1} acts freely on the set of D for
which (E/D, P mod D) defines s.
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Next, let p = (π)2 be ramified in R. Then E[π] is the unique subgroup of order p
on E which is stable under R. The pair (E/D,P mod D) is isomorphic to (E, π ·P )
via π. With the obvious meaning of 〈π〉, we may write ast ≡ 0 mod ` for s 6= 〈π〉t,
while ast ≡ 1 mod ` for s = 〈π〉t. Tracing through the definitions, one emerges
with the desired assertion that Tp operates on Qs as [π].

In the final case where p = (π)(π′), there are two distinct subgroups D which
are stable under AutE. The corresponding quotients of (E,α) are represented
by (E, π ·P ) and (E, π′ ·P ). Let s1 = 〈π〉t and s2 = 〈π′〉t. If the two si are distinct,
the numbers ast mod ` are 1 for s = s1, s2 and zero otherwise. If s1 = s2, then
ast = 2 when s = s1 = s2 and ast = 0 otherwise. This leads to the required formula
Tp = [π] + [π′]. ¤

Let T̃ be the subring of End J(H, q) generated by the endomorphisms Tp and 〈d〉
of J(H, q). (There is a functorial, faithful action of T̃ on the space of weight-two
cusp forms for Γ∩Γ0(q); thus T̃may be defined alternatively as in the Introduction.)
Theorem 3 states that the action of T̃ on Qs factors through the action of T on Qs,
in such a way that 〈d〉 ∈ T̃ acts as [d] ∈ T for all d ∈ (Z/NZ)∗ that Tp ∈ T̃ acts
as τp. Equivalently, there is a commutative triangle

T̃ −−→ T

↘ ↙

EndQs

in which the left-hand diagonal arrow describes the action of Hecke operators on Qs

and the right-hand diagonal arrow is the structural map making Qs into a T-
module. The horizontal arrow is visibly surjective, since T = F`[∆] is generated by
the various [d]. By Lemma 5, Qs is a free rank-one T-module. Therefore, the map
T→ EndQs is injective. Accordingly, the image of T̃ in End Qs may be identified
with T. Via this identification, the set of maximal ideals of T̃ in the support of Qs

becomes the set of maximal ideals of T = F`[∆].
This latter set may be viewed as a set of conjugacy classes of characters. Indeed,

if m is a maximal ideal of T, then T/m is a finite field of characteristic `. Hence m

may be obtained as the kernel of some ring homomorphism T→ F`. On the other
hand, restriction to ∆ yields a 1-1 correspondence between ring homomorphisms
T → F` and group homomorphisms θ : ∆ → F

∗
` . By Galois theory, two ring

homomorphisms T ⇒ F` have the same kernel if and only if they are conjugate
under Gal(F`/F`). It follows that the set of maximal ideals of T is in correspondence
with the set of Gal(F`/F`)-conjugacy classes of characters θ.

As was noted above, ∆ may be viewed as the Galois group of an abelian extension
of K in Q. Accordingly, the characters θ become homomorphisms Gal(Q/K) →
F
∗
` which factor through the Galois group we called Gal(L/K). For each such

homomorphism, we let θ′ be the map Gal(Q/K) → F
∗
` defined by

θ′(x) = θ(gxg−1),

where g is an element of Gal(Q/Q) which does not belong to Gal(Q/K).
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Lemma 6. We have θ = θ′ if and only if θ is identically 1.

Proof. If θ is identically 1, it certainly coincides with θ′. Conversely, suppose that
θ = θ′. Let f be the conductor of θ. As is well known, the conductor of θ′ is the
image of f under the non-trivial involution K → K. Because θ = θ′, f is invariant
under this involution. It is in any case a divisor of I. It follows that f divides (

√−3)
in the case where K = Q(

√−3) and that f divides (1+
√−1) in case K = Q(

√−1).
In the former case, θ is a map F∗3 → F

∗
3 which is trivial on {±1}. In the latter case,

θ is a map F∗2 → F
∗
2. Hence θ is the trivial map in either case. ¤

Now let Ind θ be the induced representation

IndGal(Q/Q)

Gal(Q/K)
θ : Gal(Q/Q) → GL(2,F`).

We can make an explicit model for Ind θ by choosing g 6∈ Gal(Q/K) as above and
defining

Ind θ(x) =





(
θ(x) 0

0 θ′(x)

)
for x ∈ Gal(Q/K),

(
0 θ(xg)

θ(g−1x) 0

)
for x 6∈ Gal(Q/K).

In particular, one reads from this model the well known formula

tr(Ind θ(x)) =
{

θ(x) + θ′(x) if x ∈ Gal(Q/K),

0 if x 6∈ Gal(Q/K)

for the trace of Ind θ. The determinant of Ind θ is the product of two characters,
the first of which is the homomorphism Gal(Q/Q) → {±1} which corresponds to
the quadratic subfield K of Q. This homomorphism may be described alterna-
tively as the mod ` cyclotomic character χ` which gives the action of Gal(Q/Q)
on the group of `th roots of 1 in Q. It has order two if ` = 3, while it is trivial
if ` = 2. The second of the two characters is θ◦Ver, where Ver is the Verlagerung
map from Gal(Q/Q) to the abelianization of Gal(Q/K). It is obtained by com-
posing: the mod N cyclotomic character Gal(Q/Q) → (Z/NZ)∗, the identification
(Z/NZ)∗ ∼→ (R/I)∗, and the character θ : (R/I)∗ → F

∗
` .

Lemma 7. If θ is non-trivial, the representation Ind θ is irreducible. Suppose
instead that θ is trivial. Then the image of Ind θ has order two; the kernel of Ind θ
is Gal(Q/K). When ` = 3, Ind θ is the direct sum of the trivial representation
and the one-dimensional representation with character χ3. When ` = 2, Ind θ is
indecomposable and its semisimplification is the direct sum of two copies of the
trivial representation.

Proof. Suppose that θ is non-trivial. Then by Lemma 6, θ and θ′ are distinct. The
restriction of Ind θ to Gal(Q/K) is thus the direct sum of two distinct characters.
It follows that there are precisely two lines in the representation space of Ind θ
which are invariant under Gal(Q/K). These lines are permuted by the element g;
in particular, no line is stable under the full Galois group Gal(Q/Q). If θ is trivial,
then the required assertions are clear from the model of Ind θ presented above. ¤
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Note that, in the case where ` = 2 and θ = 1, the representation Ind θ is
that given by the unique non-trivial extension of Z/2Z by µ2 in the category of
commutative group schemes of type (2, . . . , 2) over SpecZ. (See [11, Ch. II, §12].)

Let m be the maximal ideal of T̃ arising from θ. The quotient T̃/m becomes a
subfield of F` via the embedding T̃/m ↪→ F` induced by θ. To θ we associate the
representation

ρθ = ρm ⊗eT/m F` : Gal(Q/Q) → GL(2,F`)

obtained by composing ρm with the inclusion GL(2, T̃/m) ↪→ GL(2,F`). By vary-
ing θ over the set of characters ∆ → F

∗
` , we obtain from Qs a family of represen-

tations Gal(Q/Q) → F
∗
` . We seek to describe this family.

Proposition 3. Let p be a prime number which does not divide qN`. Then the
trace of ρθ(Frobp) is

{
0 if p is inert in K,
θ(π) + θ(π′) if p = (π)(π′) is split in K,

while the determinant of ρθ(Frobp) is pθ(p) = ±θ(p).

Proof. The matrix ρm(Frobp) has trace Tp mod m and determinant p〈p〉. Viewing
T̃/m as a quotient of T, we can replace 〈p〉 by [p] and Tp by τp. The map θ sends
each [δ] ∈ T to θ(δ). The desired formulas now follow. ¤

Theorem 4. For each θ, ρθ is the semisimplification of the induced representation
Ind θ.

Proof. This follows easily from Proposition 3, the Cebotarev Density Theorem, the
Brauer-Nesbitt Theorem and the formulas given above for the trace and determi-
nant of Ind θ. ¤

It is time now to recapitulate. The group Q = Φ/Φ0 is the sum of subgroups Qs

belonging to the supersingular points s of X0(N)(Fq) which have extra automor-
phisms and which satisfy the condition (∗) of §4. To each such point is associated
one of the quadratic fields Q(

√−3), Q(
√−1); call this field K. The point s and

the group H determine an abelian extension L/K. We induce those characters
θ : Gal(Q/K) → F

∗
` which factor through Gal(L/K) to obtain two-dimensional

ρ representations of Gal(Q/Q). According to Lemma 7, the representations ρ are
irreducible when θ is non-trivial. The semisimplifications of the induced representa-
tions ρ are the F`-linear two-dimensional representations of Gal(Q/Q) which arise
from Qs.

From another point of view, let K be one of the two fields Q(
√−3), Q(

√−1).
To fix ideas, take the former field and embed it in Q. Let R be the ring of integers
of K, and let f be a non-zero integral ideal of R for which R/f is cyclic as an
abelian group. Consider the group Cf of ideal classes of K modulo f, and let θ be
a non-trivial homomorphism Cf → F

∗
3. Using class field theory, regard θ as being

defined on Gal(Q/K) and induce θ to obtain a two-dimensional representation ρ
of Gal(Q/Q). This representation is irreducible. Let N be the norm of f, and let
H be the image of R∗ in (R/f)∗ = (Z/NZ)∗.
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Theorem 5. The representation ρ arises from the component group in the mod q
reduction of J(H, q) whenever q is a prime number which does not divide 2N and
which is congruent to 2 modulo 3.

Proof. Since q is 2 modulo 3, we may choose a supersingular elliptic curve E over Fq

whose automorphism group is cyclic of order six. Identify Z[AutE] with R and let
C be the kernel of f on E. The pair (E, C) then represents a point s on X0(N)
which has extra automorphisms and satisfies condition (∗). We have seen that ρ
arises from the subquotient Qs of the component group associated with J(H, q).

¤
As an application of the Theorem, we obtain the following statement, which

could presumably be proved much more directly.

Corollary. The representation ρ arises from the space of weight-two cusp forms
on Γ1(N).

Proof. Let q be a prime number as in the statement of Theorem 5. The conclusion
of the Theorem implies that ρ arises from the space of weight-two cusp forms on
ΓH(N) ∩ Γ0(q), and hence from the space of cusp forms on Γ1(N) ∩ Γ0(q). Since
ρ is unramified at q, the desired conclusion now follows from “Mazur’s Principle”
[15, Theorem 8.1]. ¤

In the situation of Theorem 5, one can ask whether or not ρ arises from the
space of weight-two cusp forms on ΓH(N). In the example treated in §2, this space
is zero, so the response is negative. It might be interesting to answer this question
in general.
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