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Raising the Levels of Modular Representations

Kenneth A. Ribet

1 Introduction

Let ` be a prime number, and let F be an algebraic closure of the prime field F`.

Suppose that

ρ : Gal(Q/Q) → GL(2,F)

is an irreducible (continuous) representation. We say that ρ is modular of level N ,

for an integer N ≥ 1, if ρ arises from cusp forms of weight 2 and trivial character

on Γo(N).

The term “arises from” may be interpreted in several equivalent ways. For our

present purposes, it is simplest to work with maximal ideals of the Hecke algebra for

weight-2 cusp forms on Γo(N). Namely, let S(N) be the C-vector space consisting

of such forms, and for each n ≥ 1 let Tn ∈ End S(N) be the nth Hecke operator.

Let T = TN be the subring of End S(N) generated by these operators. As is well

known ([3], Th. 6.7 and [7], §5), for each maximal ideal m of T, there is a semisimple

representation

ρm : Gal(Q/Q) → GL(2,T/m),

unique up to isomorphism, satisfying

tr ρm(Frobr) = Tr (mod m), det ρm(Frobr) = r (mod m)

for almost all primes r. (Here Frobr is a Frobenius element in Gal(Q/Q) for the

prime r.) This representation is in fact unramified at every prime r prime to `N , and

the indicated relations hold for all such primes. We understand that ρ is modular of

level N if there is a maximal ideal m of T, together with an inclusion ω:T/m ↪→ F,

so that the representations ρ and ρm ⊗ω F are isomorphic. (Cf. [7], §5.)

The representations ρm are nothing other than the Galois representations at-

tached to mod ` eigenforms of weight 2 on Γo(N). Indeed, let L be the space of
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forms in S(N) which have rational integral q-expansions. As is well known, L is a

lattice in S(N), cf. [3], Proposition 2.7. The space L = L/`L is the space of mod

` cusp forms on Γo(N). The F`-algebra A generated by the Hecke operators Tn in

EndL may be identified with T/`T (see, for example, [7], §5). To give a pair (m, ω)

as above is to give a character (i.e., homomorphism)

ε : A → F.

If f is a non-zero element of L ⊗F`
F which is an eigenvector for all Tn, the action

of A on the line generated by f defines such a character ε. It is an elementary fact

that all characters ε arise in this manner.

Assume now that ρ is modular of level Np, where p is a prime number not divid-

ing N . We say that ρ is p-new (of level pN) if ρ arises in a similar manner from the

p-new subspace S(pN)p−new of S(pN). Recall that there are two natural inclusions

(or degeneracy maps) S(N) →→ S(pN) and dually two trace maps S(pN) →→ S(N).

(See [1] for the former maps.) The two maps S(N) →→ S(pN) combine to give an

inclusion S(N) ⊕ S(N) ↪→ S(pN), whose image is known as the p-old subspace

S(pN)p−old of S(pN). The space S(pN)p−new is defined as the orthogonal comple-

ment to S(pN)p−old in S(pN), under the Petersson inner product on S(pN). It may

also be characterized algebraically as the intersection of the kernels of the two trace

maps; this definition is due to Serre. The space S(pN)p−new is TpN -stable.

The image of TpN in End S(pN)p−new is the p-new quotient

TpN = TpN/p−new

of TpN . We say that ρ is p-new if m ⊂ TpN and ω may be found, as above, in such

a way that the maximal ideal m of TpN is the inverse image of a maximal ideal

of TpN , under the canonical quotient map TpN → TpN . On a concrete level, this

means that the character

ε : TpN → F

coming from (m, ω) is defined by an eigenform in the mod ` reduction of the space
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S(pN)p−new, i.e., in the F-vector space Λ⊗Z F, where Λ is the lattice in S(pN)p−new

consisting of forms with rational integral coefficients.

Theorem 1 Let ρ be modular of level N . Let p 6 |`N be a prime satisfying one or

both of the identities

tr ρ(Frobp) = ±(p + 1) (mod `). (1)

Then ρ is p-new of level pN .

Remarks.

1. In the Theorem, and in the discussion below, we assume that ρ is irreducible, as

above.

2. A slightly stronger conclusion may be obtained if one assumes that ρ is q-new

of level N , where q is a prime number which divides N , but not N/q. Under this

hypothesis, plus the hypothesis of Theorem 1, one may show that ρ is pq-new of level

pN , in a sense which is easy to make precise as above. (See [7], §7, where a theorem to

this effect is proved, under the superfluous additional hypothesis p ≡ −1 (mod `).)

The interest of Theorem 1 is that no hypothesis is made about the existence of a

prime number q.

3. The case p = ` can be included in the Theorem if its hypothesis (1) is reformu-

lated. Namely, (1) tacitly relies on the fact that ρ is unramified outside the primes

dividing `N . Choose a maximal ideal m for ρ as in the definition of “modular of

level N .” Then (1) may be re-written as the congruence

Tp ≡ ±(p + 1) (mod m).

Assuming simply that p is prime to N , but permitting the case p = `, one proves

that ρ is p-new of level pN if this congruence is satisfied (with at least one choice of

±).

Corollary Let ρ be modular of level N . Then there are infinitely many primes

p, prime to `N , such that ρ is p-new of level pN .
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Indeed, suppose that p is prime to `N . Then p is unramified in ρ, so that a Frobenius

element Frobp is well defined, up to conjugation, in the image of ρ. By the Cebotarev

Density Theorem, there are infinitely many such p such that Frobp is conjugate to

ρ(c), where c is a complex conjugation in Gal(Q/Q). Both sides of the congruence

(1) are then 0, so that (1) is satisfied. (Cf. [7], Lemma 7.1.)

Our corollary is stated (in terms of mod ` eigenforms) as “Théorème (A)” in a

recent preprint of Carayol [2]. Carayol describes his Théorème (A) as having been

proved in preliminary versions of [7], as an application of results in [6]. In later

versions of [7], Théorème (A) was replaced by a theorem involving pq-new forms

(alluded to above), which is proved by methods involving Shimura curves. The aim

of this present note is to resurrect Théorème (A).

Our derivation of Theorem 1 is based on the results of [6]. Although we couch

our results in the language of Jacobians of modular curves, it should be clear to the

reader that we use no fine arithmetic properties of these Jacobians: the argument

is entirely cohomological. As F. Diamond has recently shown [4], an elaboration of

these methods leads to results for cusp forms of weight k ≥ 2.

2 Summary of [6]

First let N be a positive integer, and consider the modular curve Xo(N)C, along

with its Jacobian Jo(N) = Pico(Xo(N)). The curve Xo(N) comes equipped with

standard Hecke correspondences Tn, which induce endomorphisms of Jo(N) by Pic

functoriality (cf. [7], §3). These endomorphisms, in turn, act on the space of holo-

morphic differentials on the abelian variety dual to Jo(N), which is the Albanese

variety of Xo(N). This space of differentials is canonically identified with S(N), and

via this identification the endomorphism Tn of Jo(N) acts on the space of differen-

tials as the usual Hecke operator Tn of S(N). Since the action of End(Jo(N)) on

S(N) is faithful, it follows that the subring of End(Jo(N)) generated by the Tn is

“nothing other” than the ring TN .
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We now choose a prime p prime to N and consider Xo(pN) and Jo(pN), to which

the same remarks apply. The two curves Xo(pN) and Xo(N) are linked by a pair

of natural degeneracy maps δ1, δp: Xo(pN) →→ Xo(N), with the following (naive)

modular interpretation. The curve Xo(pN) is associated to the moduli problem of

classifying elliptic curves E which are furnished with cyclic subgroups CN and Cp

of order N and p, respectively. Similarly, Xo(N) classifies elliptic curves with cyclic

subgroups of order N . The degeneracy map δ1 maps (E, CN , Cp) to (E, CN), while

δp maps (E, CN , Cp) to (E/Cp, C
′
N), where C ′

N is the image of CN on E/Cp.

In a similar vein, we recall the modular interpretation of the correspondences Tp

on Xo(N) and on Xo(pN). First, for Xo(N) we have

Tp : (E, CN) 7→
∑
D

(E/D, (CN ⊕D)/D),

where the sum is taken over the (p + 1) different subgroups D of order p in E. For

Xo(pN), we have a sum of p terms

Tp : (E, CN , Cp) 7→
∑

D 6=Cp

(E/D, (CN ⊕D)/D,E[p]/D),

where E[p] is the group of p-division points on E. (This latter group is the direct sum

Cp ⊕D.) These formulas lead immediately to the relations among correspondences

δ1◦Tp = Tp◦δ1 − δp, δp◦Tp = p · δ1. (2)

The maps δ1 and δp combine to induce a map on Jacobians

α : Jo(N)× Jo(N) → Jo(pN), (x, y) 7→ δ∗1(x) + δ∗p(y).

The image of this map is by definition the p-old subvariety A of Jo(pN); the kernel

of α is a certain finite group which is calculated in [6].

Namely, let Sh be the Shimura subgroup of Jo(N), i.e., the kernel of the map

Jo(N) → J1(N) which is induced by the covering of modular curves X1(N) →

Xo(N). The group Sh is a finite group which may be calculated in the following way:

Consider the maximal unramified subcovering X → Xo(N) of X1(N) → Xo(N), and
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let G be the covering group of this subcovering. Then G and Sh are canonically Gm-

dual.

Let Σ ⊂ Jo(N)× Jo(N) be the image of Sh under the antidiagonal embedding

Jo(N) → Jo(N)× Jo(N), x 7→ (x,−x).

According to [6], Theorem 4.3, we have

Proposition 1 The kernel of α is the group Σ.

The map α is equivariant with respect to Hecke operators Tn with (n, p) = 1.

Namely, we have α◦Tn = Tn◦α for all n prime to p, with the understanding that the

endomorphism Tn of Jo(N) acts diagonally on the product Jo(N)× Jo(N). On the

other hand, this formula must be modified when n is replaced by p, as one sees from

(2).

Before recording the correct formula for Tp, we introduce the notational device of

reserving the symbol Tp for the pth Hecke operator at level N , and the symbol Up for

the pth Hecke operator at level pN . With this notation, we have (as a consequence

of (2)) the formula

Up◦α = α◦

 Tp p

−1 0

 , (3)

in which the matrix refers to the natural left action of M(2,TN) on the product

Jo(N)× Jo(N).

Concerning the behavior of Sh and Σ under Hecke operators, the following (easy)

result is noted briefly in [6] and proved in detail in [8].

Proposition 2 The Shimura subgroup Sh of Jo(N) is annihilated by the endomor-

phisms

ηr = Tr − (r + 1)

of Jo(N) for all primes r 6 |N .
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Corollary The subgroup Σ of Jo(N) × Jo(N) lies in the kernel of the endo-

morphism

 1 + p Tp

Tp 1 + p

 of Jo(N) × Jo(N). It is annihilated by the operators

Tr − (r + 1) for all prime numbers r not dividing pN .

The significance of the endomorphism introduced in the corollary appears when

we note the formula β◦α =

 1 + p Tp

Tp 1 + p

, in which β : Jo(Np) → Jo(N)×Jo(N)

is the map induced by the two degeneracy maps Xo(Np) →→ Xo(N) and Albanese

functoriality of the Jacobian. (The map β becomes the dual of α when we use

“autoduality of the Jacobian” to identify the Jacobians with their own duals.) The

formula results from the fact that the two degeneracy maps are each of degree p+1,

and from the usual definition of Tp as a correspondence in terms of degeneracy maps.

Let ∆ ⊂ Jo(N) × Jo(N) be the kernel of

 1 + p Tp

Tp 1 + p

. Then ∆ is a finite

subgroup of Jo(N) × Jo(N). Indeed, ∆ differs only by 2-torsion from the direct

sums of the kernels of Tp± (p + 1) on Jo(N). These latter kernels are finite because

neither number ±(p + 1) can be an eigenvalue of Tp on S(N), in view of Weil’s

Riemann hypothesis, which bounds Tp’s eigenvalues by 2
√

p. Further, the group ∆

comes equipped with a perfect Gm-valued skew-symmetric pairing, in view of its

interpretation as the kernel K(L) of a polarization map

φL : Jo(N)× Jo(N) → (Jo(N)× Jo(N))ˇ.

(One takes L to be the pullback by α of the “theta divisor” on the Jacobian Jo(pN).)

The subgroup Σ of ∆ is self-orthogonal under the pairing on ∆. In other words,

if we let Σ⊥ be the annihilator of Σ in the pairing, we have a chain of groups

∆ ⊃ Σ⊥ ⊃ Σ.

Note also that ∆/Σ is naturally a subgroup of the abelian variety A, since A and

Σ are the image and kernel of α, respectively. Thus the subquotient Σ⊥/Σ of ∆ is

in particular a subgroup of A.
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On the other hand, the quotient ∆/Σ⊥ is canonically the Cartier (i.e., Gm)

dual Σ∗ of Σ. It is naturally a subgroup of Aˇ. Indeed, Σ is the kernel of the

isogeny Jo(N) × Jo(N) → A induced by α. The kernel of the dual homomorphism

Aˇ→ (Jo(N)× Jo(N))ˇ may be identified with Σ∗.

To state the final result that we need, we introduce the p-new abelian subvariety

B of Jo(pN). To define it, consider the map

Jo(pN)ˇ→ Aˇ

which is dual to the inclusion A ↪→ Jo(pN). Its kernel is an abelian subvariety Z of

Jo(pN)ˇ. Using the autoduality of Jo(pN) to transport Z back to Jo(pN), we obtain

B. This subvariety of Jo(pN) is a complement to A in the sense that Jo(pN) = A+B

and A ∩ B is finite. It is p-new in that TpN stabilizes B and acts on B through its

p-new quotient TpN (which acts faithfully on B). The following main result of [6]

is a formal consequence of Proposition 2:

Theorem 2 The finite groups A ∩B and Σ⊥/Σ are equal.

In the notation of [6], A ∩ B is the group Ω, which can be described directly in

terms of ∆ and the kernel of α ([6], pp. 508–509). Once this kernel is identified, the

description of Theorem 2 is immediate.

3 Proof of Theorem 1

We assume from now on that ρ is modular of level N , and choose an ideal m of

TN , plus an embedding ω:TN/m ↪→ F as in the definition of “modular of level N .”

Assuming that one of the two congruences (1) is satisfied, we will construct

1. A maximal ideal M of TpN , and

2. An isomorphism TN/m ≈ TpN/M which takes Tr to Tr for all primes r 6= p.
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This is enough to prove the theorem, since the representations ρm and ρM will

necessarily be isomorphic, in view of the Tr-compatible isomorphism between the

residue fields of m and M. Our procedure is to construct M first as a maximal

ideal of TNp and then to verify that M in fact arises by pullback from a maximal

ideal of TpN .

It might be worth pointing out explicitly that our construction of M depends

on the sign ± in (1). If p 6≡ −1 (mod `), then there is a unique sign ± which makes

(1) true, under the hypothesis of the theorem, and our construction proceeds in a

mechanical way. In case p ≡ −1 (mod `), both congruences (1) are satisfied under

the hypothesis of the theorem, and the construction requires us to decide whether

(1) should read 0 ≡ +0 or 0 ≡ −0. The two choices of sign lead to different ideals

M, at least when ` is odd, since our construction shows that Up ≡ ±1 (mod M),

with the same sign ± as in (1).

Before beginning the construction, we introduce the following abbreviations:

R = TN , k = TN/m, T = TpN , T = TpN .

Also, let

V = Jo(N)[m]

be the kernel of m on Jo(N), i.e., the intersection of the kernels on Jo(N) of the

various elements of m. This group is a finite k-vector space which is easily seen to

be non-zero (cf. [5], or [7], Theorem 5.2). The group V ×V is then a finite subgroup

of Jo(N)× Jo(N). This subgroup has zero intersection with Sh× Sh, in view of the

irreducibility of ρm, Proposition 2 above, and [7], Theorem 5.2(c). In particular, α

maps V × V isomorphically into A. Therefore, we can (and will) regard V × V as a

subgroup of that abelian variety.

We now assume that one of the two congruences (1) is satisfied. To fix ideas we

will treat only the case

tr ρ(Frobp) ≡ −(p + 1) (mod `).
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Using the isomorphism between ρ and ρm ⊗ω F, we restate this congruence in the

form

Tp ≡ −(p + 1) (mod m). (4)

(The left-hand side of (4) is the trace of ρm(Frobp).) We embed V in V × V via the

diagonal embedding; the antidiagonal embedding would be used instead if Tp were

p + 1 modulo m. We have

V ↪→ V × V ↪→ A.

Lemma 1 The subgroup V of A is stable under T. The action of T on V is summa-

rized by a homomorphism γ : T → k which takes Tn to Tn modulo m for (n, p) = 1

and takes Up to −1.

Proof . That Tn ∈ T acts on V in the indicated way, for n prime to p, follows from

the equivariance of α with respect to such Tn. The statement relative to Up then

follows from (3) and (4).

Define M = ker γ, so that we have an inclusion T/M ↪→ k = R/m. This map

is in fact an isomorphism since k is generated by the images of the Tn with n prime

to p. Indeed, Tp lies in the prime field F` of k because of (4).

To conclude our proof of Theorem 1, we must show that the maximal ideal M of

T arises by pullback from T. For this, it suffices to show that T acts on V through

its quotient T. This fact follows from

Lemma 2 The subgroup V of A lies in the intersection A ∩B.

Proof . We first note that V , considered diagonally as a subgroup of Jo(N)×Jo(N),

lies in the group ∆. Indeed, V ⊂ Jo(N) is killed by Tp + p + 1 by virtue of (4). The

isomorphic image of V in Jo(pN) therefore lies in ∆/Σ. To prove the lemma, we

must show that this image lies in the subgroup A ∩ B = Σ⊥/Σ of ∆/Σ. In other

words, we must show that the image of V in ∆/Σ⊥ is 0.
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A somewhat painless way to see this is to view the varieties Jo(N), Jo(Np),

A, . . . as being defined over Q. The group ∆/Σ⊥ is canonically the Gm-dual of

Σ, which may identified Gal(Q/Q)-equivariantly with the Shimura subgroup Sh of

Jo(N). This latter group is in turn the Gm-dual of the covering group G introduced

above. It follows that the action of Gal(Q/Q) on ∆/Σ⊥ is trivial. (We note in

passing that the action of Gal(Q/Q) on Sh is given by the cyclotomic character

Gal(Q/Q) → Ẑ∗.) Hence if V maps non-trivially to ∆/Σ⊥, the semisimplification

of V (as a F`[Gal(Q/Q)]-module) contains the trivial representation. This semisim-

plification may be constructed by the following recipe: find the semisimplification

W on V as a k[Gal(Q/Q)]-module, and consider W as an F`-module. (A simple

representation over k remains semisimple after “restriction of scalars” from k to F`.)

Hence W contains Gal(Q/Q)-invariant vectors, if V maps non-trivially to ∆/Σ⊥.

This conclusion is absurd, since W is the direct sum of a number of copies of the

k-simple 2-dimensional representation ρm ([5], Chapter II, Proposition 14.2).
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