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Suppose that N is a prime number greater than 19 and that P is a point on the modular
curve X0(N) whose image in J0(N) (under the standard embedding ι : X0(N) ↪→ J0(N))

has finite order. In [2], Coleman-Kaskel-Ribet conjecture that either P is a hyperelliptic
branch point of X0(N) (so that N ∈ { 23, 29, 31, 41, 47, 59, 71 }) or else that ι(P ) lies in the

cuspidal subgroup C of J0(N). That article suggests a strategy for the proof: assuming

that P is not a hyperelliptic branch point of X0(N), one should show for each prime
number ` that the `-primary part of ι(P ) lies in C. In [2], the strategy is implemented

under a variety of hypotheses but little is proved for the primes ` = 2 and ` = 3. Here

I prove the desired statement for ` = 2 whenever N is prime to the discriminant of the
ring End J0(N). This supplementary hypothesis, while annoying, seems to be a mild one;

according to W. A. Stein of Berkeley, California, in the range N < 5021, it false only in

case N = 389.

1. Introduction

At the C.I.M.E. conference on the arithmetic of elliptic curves, I lectured on interrelated
questions with a common underlying theme: the action of Gal(Q/Q) on torsion points
of semistable abelian varieties over Q. In this written record of my lectures, I focus on
the modular curve X0(N) and its Jacobian J0(N) when N is a prime number. In this
special case, X0(N) and J0(N) were studied intensively by B. Mazur in [9] and [10], so
that we have a wealth of arithmetic information at our disposal.

The main theorem of this article complements the results of Coleman-Kaskel-Ribet
[2] on the “cuspidal torsion packet” of X0(N). Recall that X0(N) has two cusps,
customarily denoted 0 and ∞. Selecting the latter cusp as the more “standard” of the
two, we use it to map X0(N) to J0(N), via the Albanese mapping ι which takes a point
P of the curve to the class of the divisor (P )− (∞). This map is injective if the genus
of X0(N) is non-zero.

Let g be the genus of X0(N). For the remainder of this preliminary discussion,
make the hypothesis g ≥ 2. (This hypothesis is satisfied if and only if N ≥ 23.) Then ι
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identifies X0(N) with a subvariety of J0(N) of positive codimension. The torsion packet
in question is the set Ω of points of X0(N) whose images in J0(N) have finite order.
According to the Manin-Mumford conjecture, first proved by Raynaud in 1983 [13], Ω
is a finite set.

The article [2] introduces a strategy for identifying Ω precisely. Clearly, Ω contains
the two cusps 0 and ∞ of X0(N), whose images under ι have order n := num

(
N−1
12

)
and 1, respectively [9, p. 98]. Further, in the special case when X0(N) is hyperelliptic,
we note in [2] that the hyperelliptic branch points of X0(N) belong to Ω if and only if
N is different from 37. (Results of Ogg [11, 12] show that X0(N) is hyperelliptic if and
only if N lies in the set { 23, 29, 31, 37, 41, 47, 59, 71 }.) In fact, suppose that X0(N) is
hyperelliptic and that P is a hyperelliptic branch point on X0(N). Then 2ι(P ) = ι(0)
if N 6= 37, but P has infinite order when N = 37.

In [2], we advance the idea that Ω might contain only of the points we have just
catalogued:

Guess 1.1. Suppose that P is a point on X0(N) whose image in J0(N) has finite
order. Then either P is one of the two cusps of X0(N), or X0(N) is a hyperelliptic
curve and P is a hyperelliptic branch point of X0(N).

In the latter case, (i.e., X0(N) hyperelliptic and P a hyperelliptic branch point with
finite order in J0(N)), it follows automatically that N is different from 37.

A reformulation of Guess 1.1 involves the cuspidal subgroup C of J0(N), i.e., the
group generated by the point ι0. As we point out in [2], the results of [10] imply that the
intersection of X0(N) and C (computed in J0(N)) consists of the two cusps 0 and ∞.
In words, to prove that a torsion point P of X0(N) is a cusp is to prove that it lies
in the group C. For this, it is useful to decompose P into its primary parts: If P is
a torsion point P of J0(N) and ` is a prime number, we let P` be the `-primary part
of P . Thus P =

∑
P`, the sum being extended over all primes, and we have P ∈ C if

and only if P` ∈ C for all primes `.

Consider the following two statements (in both, we regard X0(N) as embedded in
its Jacobian via ι):

Statement 1.2. Suppose that P is an element of Ω and that ` is an odd prime. Then
we have P` ∈ C.

Statement 1.3. Suppose that P is an element of Ω and that P2 6∈ C. Then P is a
hyperelliptic branch point of X0(N).

It is clear that Guess 1.1 is equivalent to the conjunction of Statements 1.2 and 1.3.
Indeed, suppose first that (1.1) is correct and that P is an element of Ω. If P is a
cuspidal point (i.e., one of 0, ∞), then one has P` ∈ C for all primes `. If P is not
a cuspidal point, then P is a hyperelliptic branch point and N 6= 37; we then have
2P ∈ C, so that P` ∈ C for all ` > 2. Conversely, suppose that Statements 1.2 and 1.3
are true and that P is an element of Ω. If P2 is not in C, then P is a hyperelliptic
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branch point (and is thus accounted for by the guess). If P2 lies in C, then P` is in C
for all primes `, so that P is a point of C. As was mentioned above, this implies that
P is one of the two cuspidal points on X0(N).

Our article [2] proves a number of results in the spirit of (1.2). For example, suppose
that P is an element of Ω and ` is an odd prime different from N . Let g again be the
genus of X0(N). Then P` ∈ C if ` is greater than 2g or if ` satisfies 5 ≤ ` < 2g and at
least one of a number of supplementary conditions.

These notes prove a theorem in the direction of (1.3). This theorem requires an
auxiliary hypothesis concerning the discriminant of the subring T of End J0(N) which is
generated by the Hecke operators Tm (with m ≥ 1) on J0(N). (Many authors write the
Hecke operator TN as UN .) According to [9, Prop. 9.5, p. 95], the Hecke ring T is in fact
the full endomorphism ring of J0(N). Concerning the structure of T, it is known that
T is an order in a product E =

∏
Et of totally real number fields. The discriminant

disc(T) is the product of the discriminants of the number fields Ei, multiplied by the
square of the index of T in its normalization. Our auxiliary hypothesis is the following
statement:

Hypothesis 1.4. The discriminant of T is prime to N .

According to William Arthur Stein of Berkeley, California, Hypothesis 1.4 is false when
N = 389 and true for all other primes N ≤ 5011.

Theorem 1.5. Suppose that P lies in Ω and that P2 does not belong to C. In addition,
suppose either that the order of P is prime to N or that Hypothesis 1.4 holds. Then
X0(N) is hyperelliptic, and P is a hyperelliptic branch point of X0(N).

Theorem 1.5 is a direct consequence of a Galois-theoretic statement which we prove in
§7. Since this latter theorem is the main technical result of these notes, we state it
now and then show how it implies Theorem 1.5.

Theorem 1.6. Let N be a prime number, and let J = J0(N). Let ` be a prime
different from N . Suppose that P is a point of finite order on J0(N) whose `-primary
component P` is not defined over Q. Assume that at least one of the following hypotheses
holds: (1) N is prime to the order of P ; (2) ` is prime to N − 1; (3) N is prime to the
discriminant of T. Then there is a σ ∈ Gal(Q/Q) such that σP − P has order `.

Note that the hypothesis g ≥ 2 is not needed for Theorem 1.6.

Proof that (1.6) implies (1.5). Let P be as in Theorem 1.5. Because P2 does not lie
in C, P2 is not a rational point of J0(N) [9, Ch. III, Th. 1.2]. We apply Theorem 1.6
in this situation, taking ` = 2. The theorem shows that there is a σ ∈ Gal(Q/Q) such
that the divisor (σP ) − (P ) on X0(N) has order 2 in J0(N). Accordingly, the points
P and σP are distinct, and there is a rational function f on the curve X0(N) whose
divisor is 2

(
(σP )− (P )

)
. The function f has a double zero at σP , a double pole at P ,

and no other zeros or poles. It follows that the covering X → P1 defined by f is of
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degree two and that P is ramified in the covering. Since the genus of X is at least 2, it
follows that X is hyperelliptic and P is a hyperelliptic branch point. �

We conclude this discussion with a second statement which will be proved only
below. For this statement and for most of what follows, we again allow N be an arbitrary
prime; i.e., we have no need of the assumption that J = J0(N) has dimension > 1. As
in [9], we consider the Eisenstein ideal I ⊆ T and form the kernel J [I ] ⊆ J(Q). Let
K = Q(J [I ]) be the field generated by the coordinates of the points in J [I ]. Recall
that n = num

(
N−1
12

)
. Then we have:

Theorem 1.7. The field K is the field of 2nth roots of unity.

Theorem 1.7 is an essential ingredient in our proof of Theorem 1.6 in the crucial case
where ` = 2. Readers who are familiar with Mazur’s article [9] will recognize that
Theorem 1.7 follows directly from the results of that article if n is not divisible by 4.
Moreover, as H. W. Lenstra, Jr. has pointed out, Theorem 1.7 may be proved rather
easily by elementary arguments if n is divisible by 8. The most difficult case is therefore
that for which n is divisible by 4 but not by 8; this case occurs precisely when N ≡ 17
mod 32. We will discuss Lenstra’s observations in §4 and then prove Theorem 1.7
in the general case in §5 by exploiting Mazur’s “congruence formula for the modular
symbol” [9, Ch. II, §18]. An alternative proof of Theorem 1.7 was given recently by
J.A. Csirik [3]. Csirik provides a complete concrete description of J0(N)[I ] which
yields Theorem 1.7 as a corollary.

2. A local study at N

For the rest of this article, we take N to be a prime number and let J = J0(N). The
assumption of §1 concerning the genus of X0(N) is no longer required.

We remind the reader that the results of Deligne and Rapoport [4] imply that J has
purely multiplicative reduction at N . As explained in the Mazur-Rapoport appendix
to [9], the fiber over FN of the Néron model of J is the product of a cyclic component
group Φ and a torus J0

/FN
.

The character group of this torus,

X := HomFN

(
J0

/FN
,Gm

)
,

is a free Z-module of rank dim J which is furnished with compatible actions of T and
the Galois group Gal(FN/FN ). Here, FN is of course an algebraic closure of the prime
field FN . It will be convenient to choose a prime dividing N in Q and to let FN be
the residue field of this prime. Then if D ⊂ Gal(Q/Q) is the decomposition group
corresponding to the chosen prime, Gal(FN/FN ) is the quotient of D by its inertia
subgroup I. Using the quotient map D → Gal(FN/FN ), we view X as an unramified
representation of D. As one knows, this action is “nearly” trivial: the generator x 7→ xN

of Gal(FN/FN ) acts on X as an automorphism of order 1 or 2, so that the group
Gal(FN/FN2) acts trivially on X . (The group X is discussed in [14, §3] in the more
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general case where N is replaced by the product of a prime q and a positive integer
which is prime to q.)

As far as the Hecke action goes, the group X is a free Z-module whose rank is the
same as that of T, namely the dimension of J . Because T acts faithfully on X , it is
clear that X ⊗ Q is free of rank 1 over T ⊗ Q. Thus X is a “T-module of rank 1”
in the sense of [9, Ch. II, §8]. (In fact, in [9, Ch. II, Prop. 8.3], Mazur notes in effect
that X ⊗Qp is free of rank 1 over T⊗Qp for each prime p 6= N .) It is natural to ask
whether X is locally free of rank 1 over T. In this section, we will answer the question
affirmatively, except perhaps for certain primes (meaning: maximal ideals) of T which
divide 2.

In what follows, we consider a maximal ideal m of T. Let p be the characteristic of
the finite field T/m. As in [9, Ch. II, §7], we let Tm = lim←−

ν

T/mν be the completion of T

at m. As usual, we say that m is ordinary if Tp is non-zero mod m and supersingular
otherwise.

Also, we recall that m is Eisenstein if it divides (i.e., contains) the Eisenstein
ideal I of T. This latter ideal is defined (on p. 95 of [9]) as the ideal generated by
the difference TN − 1 and by the quantities η` := 1 + ` − T` as ` ranges over the
set of primes different from N . The natural map Z → T/I induces an isomorphism
Z/nZ ∼→ T/I , where n is the numerator of N−1

12 . Thus the Eisenstein primes of T
are in 1-1 correspondence with the prime ideals of Z/nZ and therefore with the prime
numbers which divide n.

Next, we write J [m] for the group of points in J(Q) which are killed by all elements
of m (cf. [9, p. 91]). This group is a T/m-vector space which is furnished with an action
of Gal(Q/Q). Recall the following key result of [9]:

Theorem 2.1. Let m be a maximal ideal of T. If m divides 2, suppose that m is either
Eisenstein or supersingular. Then J [m] is of dimension two.

Theorem 2.1 is proved in [9, Ch. II]. Note, however, that the discussions for m Eisenstein
and m non-Eisenstein occur in different sections: one may consult Proposition 14.2 if m
is non-Eisenstein and (16.3) if m is Eisenstein. (See also (17.9) if m is Eisenstein and m
divides 2.)

When m is Non-Eisenstein, Theorem 2.1 relates J [m] and the standard represen-
tation ρm of Gal(Q/Q) which is attached to m. By definition, ρm is the unique (up to
isomorphism) continuous semisimple representation Gal(Q/Q) → GL(2,T/m) satisfy-
ing: (i) det ρm is the mod p cyclotomic character; (ii) for each prime ` prime to pN , ρm

is unramified at ` and ρm(Frob`) has trace T` mod m. (The existence and uniqueness
of ρm are discussed, for instance, in [14, §5].) The representation ρm is irreducible if
and only if m is non-Eisenstein [9, Ch. II, Prop. 14.1 and Prop. 14.2]. The relation
between J [m] and ρm is that the former representation is (i.e., defines or affords) the
latter representation whenever J [m] is irreducible and 2-dimensional [9, Ch. II, §14]. In
particular, if m is non-Eisenstein, then J [m] affords the representation ρm if either p is
odd or m is supersingular.
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Suppose that ρm is irreducible. Following [18, p. 189], we define ρm to be finite
at N if there is a finite flat T/m-vector space scheme V of rank 2 over ZN such that
the restriction of ρm to D = Gal(QN/QN ) is isomorphic to the two-dimensional rep-
resentation V (QN ). The following result is obtained by combining a 1973 theorem of
Tate with the author’s level-lowering result.

Proposition 2.2. Let m be a non-Eisenstein prime of T. Then the two-dimensional
Galois representation ρm is not finite at the prime N .

Proof. Suppose first that m does not divide 2. Assume that ρm is finite at N . Then
[14, Th. 1.1] shows that ρm is modular of level 1. (In applying [14, Th. 1.1], we take
N = N , p = N , and ` = p. Note that condition 2 of the theorem is satisfied except
when m divides N . In this case however, condition 1 of the theorem holds since we do
not have N ≡ 1 mod N .) This is a contradiction, since there are no non-zero weight-2
cusp forms on Γ0(1).

Assume now that m does divide 2. Suppose again that ρm is finite at N . Then ρm is
an irreducible mod 2 two-dimensional representation of Gal(Q/Q) which is unramified
outside of the prime 2. An important theorem of Tate [20] proves, however, that there
is no such representation. �

Note that when p is different from N , ρm is finite at N if and only if ρm is unramified
at N . Thus Proposition 2.2 shows, in particular, that ρm is ramified at N for all m such
that ρm is irreducible.

Theorem 2.3. Let m be a maximal ideal of T. If m divides 2, suppose that m is either
Eisenstein or supersingular. Then X ⊗T Tm is free of rank 1 over Tm.

Proof. Since X is of rank 1, X ⊗ Tm is free of rank 1 if and only if it is cyclic. By
Nakayama’s lemma, the cyclicity amounts to the statement that X /mX has dimen-
sion ≤ 1 over the field T/m.

To prove this latter statement, i.e., the cyclicity of X /mX , we exploit the relation
between X and torsion points of J . In the following discussion, for each integer m ≥ 1,
we let J [m] be the group of points of J with values in Q which have order dividing m.
Thus J [m] is a T[Gal(Q/Q)]-module. Especially, we shall view J [m] locally at N ,
i.e., as a T[D]-module. One obtains from [6, 11.6.6–11.6.7] a T[D]-equivariant exact
sequence

0→ Hom(X /mX , µm)→ J [m]→X /mX → 0.(2.4)

(See, e.g., [15, pp. 669–670] for a discussion of this exact sequence when m is a prime
number.) Especially, there is a natural identification of Hom(X /mX , µm) with a
subgroup of J [m].

In particular, we find an injection

j : Hom(X /mX , µp) ↪→ J [m];

here, p is again the residue characteristic of m. By Theorem 2.1, j is an isomorphism if
X /mX is not cyclic.



7

On the other hand, it is clear that j cannot be an isomorphism. Indeed, the group
Hom(X /mX , µp) is finite at N in the sense of [18] (since µp is finite), and we have
seen in Proposition 2.2 that J [m] is not finite at N . �

3. The kernel of the Eisenstein ideal

We turn now to a study of the action of Gal(Q/Q) on the Eisenstein kernel in the
Jacobian J = J0(N). Let I again be the Eisenstein ideal of T, and recall that

n = num
N − 1

12
. By J [I ] we mean the kernel of I on J , i.e., the group of points

in J(Q) which are annihilated by all elements of I . The analysis of [9, Ch. II, §§16–18]
shows that J [I ] is free of rank two over T/I ≈ Z/nZ.

The group J [I ] contains the cuspidal group C, which was mentioned above, and
also the Shimura subgroup Σ of J [9, Ch. II, §11]. The two groups C and Σ are
Gal(Q/Q)-stable and cyclic of order n. The actions of Gal(Q/Q) on these two groups
are respectively the trivial action and the cyclotomic action (Σ ≈ µn). Accordingly, the
intersection of C and Σ is trivial if n is odd; in that case, the inclusions of C and Σ
in J [I ] induce an isomorphism of Gal(Q/Q)-modules C ⊕ Σ ∼→ J [I ]. If n is even,
however, C ∩Σ has order 2, and the sum C + Σ in J [I ] (which is no longer direct) has
index 2 in J [I ].

In much of what follows, the reader may wish to assume that n is even; when n is
odd, almost everything that we prove may be deduced immediately from the decompo-
sition J [I ] ≈ C ⊕ Σ.

Proposition 3.1. The group J [I ] is unramified at N .

Proof. We regard J [I ] as a D-module, where D = Gal(QN/QN ) as above. We have a
natural injection (analogous to the map j above)

Hom(X /I X , µn) ↪→ J [I ],

where X is again the character group associated with the reduction of J mod N . By
combining this injection with the inclusion of Σ in J [I ], we obtain a map of D-modules

θ : Σ⊕Hom(X /I X , µn) −→ J [I ].

This map is again injective, in view of Proposition 11.9 of [9, Ch. II].

Now by Theorem 2.3, X is free of rank 1 locally at each prime m dividing I .
Hence X /I X , and therefore Hom(X /I X , µn), has order n. Thus the source of θ
has n2 elements. Since the target of θ has the same cardinality, we conclude that θ is an
isomorphism of D-modules. The group Σ⊕Hom(X /I X , µn), however, is unramified;
note that D acts on X through its quotient Gal(FN/FN ). �

We continue our study of the action of Gal(Q/Q) on J [I ]:
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Proposition 3.2. The Galois group Gal(Q/Q) acts trivially on J [I ]/Σ.

Proof. It is clear that Jordan-Hölder constituents of the Gal(Q/Q)-module J [I ] are
all of the form µp or Z/pZ, with p dividing n. Indeed, J [I ] is an extension of a group
whose order divides 2 by a quotient of Σ⊕C, where the latter group has the indicated
property. Because J [I ] is unramified at N , it is finite at N in Serre’s sense; it extends
to a finite flat group scheme over Z. In the language of Chapter I of [9], J [I ] is thus
an admissible group scheme over SpecZ[ 1

N ] which extends to a finite flat group scheme
G over SpecZ.

To analyze G, we follow the proof of Proposition 4.5 in [9, Ch. I]. The last step in
the proof of that Proposition uses a result above it (Proposition 4.1) which applies only
to groups of odd order. However, Steps 1–3 are perfectly applicable; they show that G
is an extension of a constant group scheme by a µ-type group (dual of a constant group)
H ⊆ G.

In particular, there is a subgroup Σ′ of J [I ] with the property that the action
of Gal(Q/Q) on Σ′ is cyclotomic, whereas the action of Gal(Q/Q) on J [I ]/Σ′ is trivial.
By [9, Ch. III, Th. 1.3], Σ′ is contained in Σ. Hence the action of Gal(Q/Q) on the
quotient J [I ]/Σ is indeed trivial. �

Before studying further the Gal(Q/Q)-action on J [I ], we pause to establish a
converse to Proposition 3.1.

Proposition 3.3. Let P ∈ J(Q) be a torsion point on J for which the finite extension
Q(P )/Q is unramified at N . Then P lies in J [I ].

Proof. Let M be smallest T[Gal(Q/Q)]-submodule of J(Q) which contains both P
and J [I ]. We must prove that M is annihilated by I . Clearly, M is finite; indeed, we
have M ⊆ J [mn] if m is the order of P . Consider the Jordan-Hölder constituents of M ,
regarded as a T[Gal(Q/Q)]-module. If V is such a constituent, then the annihilator
of V is a maximal ideal m of T. It follows from the discussion of [9, Ch. II, §14] that
V is 1-dimensional over T/m if and only if m is Eisenstein. If m is not Eisenstein, then
V is isomorphic to the irreducible representation ρm. (This follows from the discussion
on page 115 of [9]. In fact, the main result of [1] can be used to prove the more precise
fact that J [m] is a direct sum of copies of ρm when m is non-Eisenstein.) However,
Proposition 2.2 shows that ρm is ramified at N when m is non-Eisenstein. We conclude
that all constituents of M belong to Eisenstein primes of T. These constituents therefore
have the form µp or Z/pZ, with p dividing n.

Returning to the language of [9, Ch. I], we see that M is an admissible group. As
explained in the proof of the proposition above, M must be an extension of a constant
group Q by a µ-type group M0. Since M contains J [I ] and since Σ is the maximal
µ-type group in J(Q), we have M0 = Σ. Next, note that the extension of T-modules

0→ Σ→M → Q→ 0

splits. The splitting is obtained as in the argument on p. 142 of [9] which proves [9,
Ch. III, Th. 1.3]. Namely, specialization to characteristic N provides a map M → Φ,
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where Φ is the component group of J in characteristic N . We get a splitting because the
restriction of this map to Σ is an isomorphism Σ ∼→ Φ. It follows that I annihilates M
if and only if I annihilates Q.

Since Gal(Q/Q) acts trivially on Q, the Eichler-Shimura relation shows that Q is
annihilated by the differences η` = 1 + ` − T`. To deduce from this the apparently
stronger fact that Q is annihilated by all of I (which includes the generator TN − 1),
write Q as the direct sum ⊕mQm, where the sum runs over the set of Eisenstein primes
of T. Each summand Qm is a module over T/µν , where ν is a suitable positive integer.
It follows from [9, Ch. II, Th. 18.10] that the image of I in T/µν is generated by a
single element of the form η`. Thus Qm is annihilated by I . Since this statement is
true for each m, Q is annihilated by I . �

Our next goal is to study J [I ] sufficiently closely to permit identification of the
field Q(J [I ]), i.e., to prove Theorem 1.7. For an alternative proof of Theorem 1.7, the
reader may consult Csirik’s forthcoming article [3], which determines J [I ] completely
by a method generalizing that of [9, Ch. II, §12–§13].

Recall that the cuspidal group C is provided with a natural generator, namely
the image of the cusp 0 in J . We select generators for certain other cyclic groups by
making use of the place over N that we have chosen in Q. As explained in §11 of [9,
Ch. II], reduction to characteristic N induces isomorphisms among C, Σ and the group
of components of J/FN

. In particular, we have a distinguished isomorphism C ≈ Σ.
Since C is provided with a generator, we obtain a basis of Σ. (See [5] for a comparison
of the isomorphism C ≈ Σ with a second natural one.)

Since Σ and J [I ] are free of ranks 1 and 2 over Z/nZ, the group Q := J [I ]/Σ is
cyclic of order n. The intersection C ∩ Σ has order gcd(2, n) [9, Ch. II, Prop. 11.11].
The image of C in Q has order n/ gcd(2, n). Choose a generator g of Q such that 2g is
the image in Q of the chosen generator of C. Finally, note as above that reduction to
characteristic N provides us with a splitting of the tautological exact sequence which
displays Q as a quotient of J [I ]. This splitting writes J [I ] as the direct sum Σ⊕Q.
(Said differently, J [I ] is the direct sum of Σ and the “toric part” Hom(X /I X , µn)
of J [I ]. The natural map Hom(X /I X , µn)→ Q is an isomorphism.)

Using the chosen generators of Σ and Q, we write J [I ] = (Z/nZ)2. In this model
of J [I ], Σ is the group generated by (1, 0) and C is the group generated by (1, 2). Since
Gal(Q/Q) preserves Σ and operates on Σ as the mod n cyclotomic character χ, and
since Gal(Q/Q) operates trivially on Q, the action of Gal(Q/Q) on J [I ] is given in
matrix terms by a map

σ 7−→ ρ(σ) :=
(

χ b(σ)
0 1

)
.

Here, the map σ 7→ b(σ) ∈ Z/nZ is clearly a 1-cocycle: it verifies the identity

b(στ) = b(σ) + χ(σ)b(τ)

for σ, τ ∈ Gal(Q/Q).
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4. Lenstra’s input

The contents of this section were suggested to the author by H. W. Lenstra, Jr. The
author thanks him heartily for his help.

Lemma 4.1. For all σ ∈ Gal(Q/Q), we have 2b(σ) = 1− χ(σ).

Proof. For each σ, ρ(σ) fixes the vector
(

1
2

)
∈ C. The lemma follows immediately. �

Proposition 4.2. The field Q(J [I ]) is an abelian extension of Q which contains
Q(µn) and has degree 1 or 2 over Q(µn).

Proof. To say that Q(J [I ]) is abelian over Q is to say that the image of ρ is abelian.
This amounts to the identity b(στ) ?= b(τσ) for σ, τ ∈ Gal(Q/Q). By the cocycle iden-
tity, the two sides of the equation are respectively b(σ) + χ(σ)b(τ) and b(τ) + χ(τ)b(σ).
These expressions are indeed equal, in view of the lemma above.

It is clear that the field Q(J [I ]) contains Q(µn) because the kernel of ρ is contained
in the kernel of χ. Let H be this latter kernel; i.e., H = Gal

(
Q/Q(µn)

)
. On H, χ = 1;

hence we have 2b = 0 in Z/nZ. In other words, the group ρ(H) is a subgroup of the

group of matrices
(

1 x
0 1

)
with 2x = 0. Since this group has order gcd(2, n), the

extension of Q cut out by ρ is an extension of Q(µn) of degree 1 or 2. �

The proof of Proposition 4.2 (or, alternatively, the decomposition J [I ] = Σ ⊕ C)
shows that Q(J [I ]) = Q(µn) if n is odd. Suppose now that n is even; write n = 2kno,
where no is the “odd part” and 2k ≥ 2 is the largest power of 2 dividing n. Then ρ is
the direct sum of representations

ρ2 : Gal(Q/Q)→ GL(2,Z/2kZ), ρo : Gal(Q/Q)→ GL(2,Z/noZ),

which are defined by the actions of Gal(Q/Q) on the 2-primary part and the odd part
of J [I ], respectively. It is evident that the latter representation cuts out Q(µno) and
that the kernel of the former representation corresponds to an abelian extension K of Q
which contains Q(µ2k) and has degree 1 or 2 over this cyclotomic field. Since ρ2 is
defined by the action of Gal(Q/Q) on a group of 2-power division points of J , this
representation can be ramified only at 2 and at N . We have seen, however, that ρ is
unramified at N (Proposition 3.1). Hence K/Q is an abelian extension of Q which
is ramified only at 2; it follows (e.g., from the proof that the “local Kronecker-Weber
theorem” implies the usual, global one [21, Ch. 14]) that K is contained in the cyclotomic
field Q(µ2∞). Hence we have either K = Q(µ2k) or K = Q(µ2k+1). Accordingly, we
have

Q(µn) ⊆ Q(J [I ]) ⊆ Q(µ2n).

In summary, the displayed inclusions hold both in the case when n is odd and when
n is even. In the former case, the two cyclotomic fields are equal, and they coincide
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with Q(J [I ]). In the latter case, there remains an ambiguity which will be resolved by
the proof of Theorem 1.7.

Before turning to this proof in the general case, we present a simple proof of Theo-
rem 1.7 in the case where k is different from 2. To prove the Theorem is to show that
ρ2 cuts out the field Q(µ2k+1). This is perfectly clear if k = 0, in which case ρ2 is the
trivial representation: the field K = Q is indeed the field of second roots of 1. If k = 1,
ρ2 gives the action of Gal(Q/Q) on the group D which is described in [9, Ch. II, §12];
Lemma 12.4 of that section states that the field K is the field of fourth roots of unity.

Suppose now that k is at least 3, and choose σ ∈ Gal(Q/Q) so that χ(σ) ≡ 1+2k−1

mod 2k and χ(σ) ≡ 1 mod no. It is evident that χ(σ2) = 1; we will show, however, that
ρ2(σ2) 6= 1. These two pieces of information imply that K is not contained in Q(µn),
which is precisely the information that we seek. To prove that ρ2(σ2) is different from 1
is to show that b(σ2) 6≡ 0 mod 2k. We have

b(σ2) = (1 + χ(σ)b(σ) ≡ 2(1 + 2k−2)b(σ) mod 2k

by the cocycle identity and the choice of σ. Since k is at least 3, the factor (1 + 2k−2)
is odd. Now 2b(σ) = 1 − χ(σ) ≡ −2k−1 mod 2k in view of Lemma 4.1. Thus b(σ) is
divisible by 2k−2 but not by 2k−1. It follows that b(σ2) is divisible by 2k−1 but not
by 2k. �

5. Proof of Theorem 1.7

We return to the discussion of the general case, removing the assumption k ≥ 3. Recall
that ρ is the representation of Gal(Q/Q) giving the action of Gal(Q/Q) on J [I ] and
that η` = 1 + `− T` for each ` 6= N .

Lemma 5.1. Let ` be a prime number prime to nN . Suppose that ρ(Frob`) = 1. Then
η` belongs to I 2.

Proof. One has T/I 2 =
⊕

Tm/I 2Tm, where the sum is taken over the Eisenstein
primes m of T. We must show that the image of η in Tm/I 2Tm is 0 for each such m.
Fix m, and let p be the corresponding prime divisor of n. Consider the p-divisible group
Jm =

⋃
ν

J [mν ] and its Tate module Tam := Hom(Qp/Zp, Jm). Let

Ta∗m := HomZp
(Tam,Zp) = Hom(Jm,Qp/Zp);

the latter description of Ta∗m presents this Tate module as the Pontryagin dual of Jm.
Note that Tam and Ta∗m have been shown to be free of rank 2 over Tm [9, Ch. II,
Cor. 16.3]. The Tate pairing Tap(J)×Tap(J)→ Zp(1) may be viewed as an isomorphism
Tam ≈ Ta∗m(1) which is compatible with the natural actions of Gal(Q/Q) and T on the
two modules.

Let F = Frob`. Since 1− F annihilates J [I ], 1− F annihilates the Shimura sub-
group Σ ≈ µn of J , which is contained in J [I ]. Hence ` ≡ 1 mod n. Accordingly, F acts
as the identity on Hom(J [I ], µn) and its p-primary subgroup Hom(Jm[I ],Qp/Zp)(1).
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We may view this dual as the quotient Ta∗m(1)/I Ta∗m(1) ≈ Tam /I Tam. Hence we
have

(1− F )(Tam) ⊆ I · Tam .

Since Tam is free of rank 2 over Tm, we obtain

detTm

(
1− F

∣∣ Tam

)
∈ I 2Tm.

This proves what is needed, since the determinant we have calculated is nothing but η`;
indeed, the the determinant and trace of F acting on Tam are ` and T`, respectively. �

Theorem 5.2. Assume that n is even. Let ` 6= N be a prime number which satisfies
the congruence ` ≡ 1 mod n but not the congruence ` ≡ 1 mod 2n. Assume further that
the image of ` in (Z/NZ)∗ is a generator of this cyclic group. Then ρ(Frob`) 6= 1.

Proof. Let ∆ be the unique quotient of (Z/NZ)∗ of order n. To prove our result, we refer
to §18 of [9, Ch. II]. In that section, one finds a homomorphism ε+ : I /I 2 → H+/I H+

and a map ϕ : ∆ → H+/I H+, both of which prove to be isomorphisms. The map
κ := ϕ−1◦ε+ is an isomorphism I /I 2 ∼→ ∆. The congruence formula for the winding
homomorphism yields

κ(η`) = `−1
2 · `.

Here, ` is the image of ` ∈ (Z/NZ)∗ in ∆, and the operator `−1
2 is an exponent. (One

is viewing the multiplicative abelian group ∆ as a Z-module.) Under our hypotheses,
it is clear that `−1

2 · ` has order 2 in ∆. Thus, by the congruence formula, η` is non-
zero in I /I 2. Using Lemma 5.1, we deduce the required conclusion that ρ(Frob`) is
different from 1. �

We now prove Theorem 1.7, i.e., the statement that Q(J [I ]) coincides with the
cyclotomic field Q(µ2n).

As was explained above, the statement to be proved follows from the decomposition
J [I ] = Σ⊕ C when n is odd. Assume then that n is even. As we have discussed, the
field Q(J [I ]) is an extension of Q(µn) of degree dividing 2. Moreover, if Q(J [I ]) is
indeed quadratic over Q(µn), then Q(J [I ]) has no choice but to be Q(µ2n). To see that
the extension Q(J [I ])/Q(µn) is non-trivial, we use the result above. Using the Chinese
Remainder Theorem and Dirichlet’s theorem on primes in an arithmetic progression,
we may choose ` so as to satisfy the conditions of Theorem 5.2. A Frobenius element
Frob` for ` in Gal(Q/Q) then acts trivially on µn, but non-trivially on J [I ]. �

6. Adelic representations

Let ` be a prime. As usual, we consider the `-divisible group J` =
⋃
ν

J [`ν ] and

its Tate modules Ta` := Hom(Q`/Z`, J`) and Ta`⊗Z`
Q`. The `-adic representation

of Gal(Q/Q) attached to J is the continuous homomorphism

ρ` : Gal(Q/Q)→ Aut(Ta`) ↪→ Aut (Ta`⊗Q`))

which arises from the action of Gal(Q/Q) on Ta`.
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This action is T-linear, where T is the Hecke ring introduced above. Thus ρ` takes
values, for example, in the group AutT`

(Ta`), where T` = T ⊗ Z`. Note that the Z`-
algebra T` is the product of the completions Tm of T at the maximal ideals m of T
which divide `. The corresponding decomposition of Ta` into a product of modules over
the individual factors Tm of T` is the natural decomposition of Ta` =

∏
m Tam, where

the Tam are the m-adic Tate modules which were introduced earlier.

As we have noted, Mazur proves in [9, Ch. II, §15–§18] that Tam is free of rank 2
over Tm for each maximal ideal m of T which is not simultaneously ordinary, non-
Eisenstein and of residue characteristic 2. Thus, after a choice of basis, AutT`

(Ta`)
becomes GL(2,T⊗ Z`) for each prime ` > 2. Thus, if ` is odd, ρ` may be viewed as a
homomorphism

Gal(Q/Q)→ GL(2,T⊗ Z`).

Similarly, we may view ρ2 as taking values in GL(2,T ⊗Q2). Accordingly, the image
G` of ρ` is a subgroup of GL(2,T⊗Q`) in all cases and a subgroup of GL(2,T⊗ Z`)
when ` is odd. The determinant of ρ` is the `-adic cyclotomic character.

The group G` is studied in [16], where the following two results are obtained as
Proposition 7.1 and Theorem 6.4, respectively:

Theorem 6.1. The group G` is open in the matrix group

{M ∈ GL(2,T⊗Q`) | det M ∈ Q∗
` }.

Theorem 6.2. Suppose that ` is at least 5 and is prime to the discriminant of T.
Suppose further that no maximal ideal m|` is an Eisenstein ideal of T (i.e., that ` is
prime to n). Then

G` = {M ∈ GL(2,T⊗ Z`) | det M ∈ Z`
∗ }.

Consider next the adelic representation ρf :=
∏

` ρ`, where the product is taken over
the set of all prime numbers `. The image Gf of ρf is a subgroup of the product

∏
` G`,

which in turn is contained in the group

{M ∈ GL(2,T⊗Q2) | detM ∈ Q∗
2 } ×

∏
` 6=2

{M ∈ GL(2,T⊗ Z`) | det M ∈ Z`
∗ }.

According to [16, Th. 7.5], Gf is open in the latter product.

For each prime `, let H` be the intersection of Gf with the group

1× · · · × 1×G` × 1× · · · × 1 · · · ,

where G` is placed in the `th factor. Thus H` is a subgroup of G` which may be viewed
as the image of the restriction of ρ` to the kernel of the representation

∏
`′ 6=` ρ`′ .
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Theorem 6.3. Assume that ` satisfies the conditions of Theorem 6.2, i.e., that ` is
prime to discT and distinct from 2 and 3. Assume further that ` is different from N .
Then H` = G` = {M ∈ GL(2,T⊗ Z`) | detM ∈ Z`

∗ }.

Proof. The proof of this result is explained in the course of the proof of Theorem 7.5
of [16]: Fix `, and let X be the smallest closed subgroup of Gal(Q/Q) which contains
all inertia groups of Gal(Q/Q) for the prime `. Since ρ`′(X) = {1} for all primes `′ 6= `,
ρ`(X) is a subgroup of H`, which in turn is contained in G`. As the author observed
at the end of §6 of [16], the desired equality ρ`(X) = G` follows from Theorem 3.4 and
Proposition 4.2 of [16]. �

We now present a variant of the result above for the prime ` = N . For this, we let Γ be
the subgroup 1 + NZN of Z∗N , i.e., the N -Sylow subgroup of Z∗N .

Proposition 6.4. Suppose that N is prime to the discriminant of T. Then HN

contains the group {M ∈ GL(2,T⊗ ZN ) | det M ∈ Γ }.

Proof. Let X now be the smallest closed subgroup of Gal(Q/Q) which contains the wild
subgroups (i.e., N -Sylow subgroups) of all inertia groups for N in Gal(Q/Q). It follows
from the exact sequence (2.4) that we have ρ`(X) = {1} for all ` 6= N . (If ` 6= N , inertia
groups at N act unipotently in the `-adic representations attached to J . Consequently,
the image under ρ` of an inertia group at N is a pro-` group.) Hence ρN (X) is a subgroup
of HN , and it will suffice to show that ρN (X) = {M ∈ GL(2,T⊗ZN ) | det M ∈ Γ }. We
note that ρN (X) is contained in this matrix group since the image of ρN (X) under the
determinant mapping GN → Z∗N is a pro-N group. Since in fact the group det ρN (X) is
all of Γ, the equality ρN (X) = {M ∈ GL(2,T⊗ ZN ) | detM ∈ Γ } means that ρN (X)
contains SL(2,T⊗ ZN ).

Because T is unramified at N , [16, Prop. 4.2] implies that the inclusion

ρN (X) ⊇ SL(2,T⊗ ZN )

holds if and only if it holds “mod N” in the sense that the image of X in GL(2,T/NT)
contains SL(2,T/NT). To say that this image contains SL(2,T/NT) is in fact to say
that the image coincides with SL(2,T/NT); indeed, Γ maps to the trivial subgroup
of (Z/NZ)∗. The image in question is certainly a normal subgroup of SL(2,T/NT)
since X is normal in Gal(Q/Q) and GN contains SL(2,T⊗ZN ). The ring T/NT is a
product of finite fields of characteristic N because T is unramified at N ; intrinsically,
T/NT =

∏
m T/m, where m runs over the maximal ideals of T which divide N .

Fix m for the moment and let ρm : Gal(Q/Q) → GL(2,T/m) be the mod m re-
duction of the N -adic Galois representation ρN . This reduction is an irreducible two-
dimensional representation because m cannot be an Eisenstein prime; indeed, m does
not divide N − 1. As we have seen in Proposition 2.2, ρm cannot be “finite” (or peu
ramifiée) in the sense of [18]; recall that the Main Theorem of [14] implies that ρm

would be modular of level 1 if it were finite. Thus ρm is wildly ramified at N , so that
the group ρm(X) is non-trivial. But ρm(X) is a normal subgroup of SL(2,T/m); we
conclude that ρm(X) = SL(2,T/m).
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Thus the image of ρN (X) in SL(2,T/NT) =
∏

m SL(2,T/m) is a normal sub-
group of SL(2,T/NT) which maps surjectively to each factor SL(2,T/m). By taking
commutators with elements of the form 1 × · · · × 1 × g × 1 × · · · × 1, we find that
ρN (X) maps surjectively to SL(2,T/NT). Therefore, as was explained above, ρN (X)
contains SL(2,T⊗ ZN ). �

Returning briefly to the group Gf , we note that we have

(
∏

`

H`) ⊆ Gf ⊆ (
∏

`

G`),

where the products are taken over all prime numbers `. A theorem of B. Kaskel [16,
Th. 7.3] implies that the image of Gf in the group GN :=

∏
` 6=N G` is all of GN . This

suggests viewing the full product
∏

` G` as the binary product GN × GN . Then Gf is
a subgroup of this product which maps surjectively to each of the two factors. The
group HN may be viewed as the kernel of the projection map Gf → GN ; symmetrically,
we let HN ⊂ GN be the kernel of the second projection map. As is well known (see
“Goursat’s Lemma,” an exercise in Bourbaki’s Algèbre, Ch. I, §4), the projections from
Gf onto GN and GN induce natural isomorphisms GN/HN ≈ Gf/(HN × HN ) and
Gf/(HN ×HN ) ≈ GN/HN . We obtain as a consequence an isomorphism

α : GN/HN ∼→ GN/HN .

The group Gf contains HN ×HN as a normal subgroup, and the image of Gf in

(GN ×GN )/(HN ×HN ) = (GN/HN )× (GN/HN )

is the graph of the isomorphism α.

It is worth remarking that Gf is open in GN×GN by [16, Th. 7.5]. Hence the groups
HN and HN are open in GN and GN respectively. Thus the groups Gf/(HN ×HN ),
GN/HN and GN/HN are finite groups which have the same order. The order of
(GN × GN )/(HN ×HN ) is the square of the orders of the three other groups. If N is
prime to discT, then the order of GN/HN is a divisor of N − 1 by Prop. 6.4. More-
over as we will see below, the order of GN/HN is always divisible by Mazur’s constant
n = num N−1

12 .

Adopting a Galois-theoretic point of view, we let K be the subfield of Q corre-
sponding to the finite quotient Gf/(HN ×HN ) of Gal(Q/Q). Let KN be the extension
of Q generated by the coordinates of the N -power torsion points on J and let KN

be the extension of Q which is defined similarly, using prime-to-N torsion points in
place of N -power torsion points. Then the compositum K∞ = KNKN is the sub-
field of Q corresponding to the quotient Gf of Gal(Q/Q), and it is clear that we have
Gal (K∞/KN ) = HN and Gal

(
K∞/KN

)
= HN . Thus

Gf/(HN ×HN ) = GN/HN = GN/HN = Gal(K/Q).
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What information do we have about K? We may restate Proposition 6.4 as follows:
If T is unramified at N , then K is contained in the field of Nth roots of unity. Indeed,
in that case, GN/HN is a quotient of

{M ∈ GL(2,T⊗ ZN ) | detM ∈ Z∗N }/{M ∈ GL(2,T⊗ ZN ) | detM ∈ Γ },

which corresponds (via the determinant) to the Galois group Gal (Q(µN )/Q). Without
the assumption on discT, we can remark, at least, that K is ramified only at N ; it is a
subfield of KN , which is ramified only at N .

We now exhibit the lower bound for [K : Q] which was alluded to above, proving
that K contains the unique subfield of Q(µN ) with degree n over Q. (Since n is 1 only
when X0(N) has genus 0, it follows that K is a non-trivial extension of Q whenever
J0(N) is non-zero.) For this, we note first that KN contains the field Q(µN ) of Nth
roots of 1; indeed, KN contains the field generated by the N -power roots of 1 in Q,
since the determinant of ρN is the N -adic cyclotomic character. The Galois group
Gal (Q(µN )/Q) = (Z/NZ)∗ has a unique quotient of order n. As in the proof of
Theorem 5.2, we refer to this quotient as ∆; field-theoretically, ∆ corresponds to a
Galois extension K∆ of Q with

K∆ ⊆ Q(µN ) ⊂ KN .

Since Gal(K∆/Q) = ∆, [K∆ : Q] = n.

Theorem 6.5. The field K contains K∆.

Proof. Let m be an Eisenstein prime (i.e., maximal ideal) of T; let ` be the corresponding
divisor of n. The Tate module Tam which was introduced in the proof of Lemma 5.1 is
free of rank two over Tm, the completion of T at m. The action of Gal(Q/Q) on Tam

is given by a representation

ρm : Gal(Q/Q)→ GL(2,Tm)

whose determinant is the `-adic cyclotomic character; if p is prime to `N , then the trace
of ρm(Frobp) is Tp ∈ Tm, Tp being the pth Hecke operator. Taking the sum of the ρm

and then reducing mod I 2, we obtain a representation

ρ : Gal(Q/Q)→ GL(2,T/I 2)

with analogous properties. In particular, for each prime p prime to nN , the trace and
determinant of ρ(Frobp) are the images of Tp and p, respectively, in T/I 2.

Let η : Gal(Q/Q) → T/I 2 be the function 1 + det ρ − tr ρ. For p prime to nN ,
η(Frobp) is the image in I /I 2 of the element ηp = 1 + p− tp of I . In particular, the
Cebotarev density theorem implies that η is a function Gal(Q/Q)→ I /I 2.

As we recalled in the proof of Theorem 5.2, there is an isomorphism κ : I /I 2 ∼→ ∆
which satisfies the congruence formula

κ(ηp) = p−1
2 · p
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for all primes p not dividing nN . In this formula, p represents the image in ∆ in the
congruence class of p mod N . Let α : Gal(Q/Q) → I /I 2 be the composite of: (1)
the mod N cyclotomic character χN : Gal(Q/Q) → (Z/NZ)∗; (2) the quotient map
(Z/NZ)∗ → ∆; (3) the inverse of κ. Then we may write alternatively

ηp = p−1
2 · α(p),

where the left-hand side is interpreted in I /I 2. If now χ = χ2n is the mod 2n
cyclotomic character, then the formula for ηp and the Cebotarev density theorem imply
the identity

η = χ−1
2 · α

of I /I 2-valued functions on Gal(Q/Q).

Let H be the kernel of ρ × χ. Then η(hg) = η(g) for all g ∈ Gal(Q/Q), since
ρ(hg) = ρ(g) in that case. Let h be an element of H and take g to be a complex
conjugation in Gal(Q/Q). Since χ(g) = −1 and χ(h) = 1, the equation η(hg) = η(g)
amounts to the identity α(hg) = α(g). Since α is a homomorphism, we deduce that
α(h) = 1.

In other words, if h ∈ Gal(Q/Q) is trivial under ρ × χ, then h is trivial in
Gal(K∆/Q). In particular, if ρN (h) = 1, then h fixes K∆. Accordingly, K∆ is contained
in the fixed field KN of the kernel of ρN . Since, by construction, K∆ is a subfield of KN ,
K∆ is contained in K. �

Theorem 6.5, which will not be used in the proof of Theorem 1.6, suggests the
problem of pinpointing K completely. According to Proposition 6.4 and Theorem 6.5,
we have K∆ ⊆ K ⊆ Q(µN ) under the apparently mild assumption that N does not
divide disc(T). Since Gal (Q(µN )/K∆) is cyclic of order (N −1)/n = gcd(N −1, 12), to
identify K under these circumstances is to calculate a divisor of gcd(N − 1, 12), namely
[K : K∆]. In the cases where X0(N) has genus 0 (i.e., N < 11 and N = 13), we clearly
have K = Q = K∆. In the case N = 11, K is constrained by our results to be either
Q(µ11) or the maximal real subfield of Q(µ11). As was noted by Lang and Trotter [8]
(see also [17, §5.3]), K = Q(µ11) because the field generated by the 2-division points
of J0(11) contains Q(

√
−11). In the case N = 37, we have gcd(N − 1, 12) = 12, so that

there are six a priori possibilities for K. In fact, Kaskel [7] shows that K is the maximal
real subfield of Q(µ37); the divisor in question is 6.

7. Proof of Theorem 1.6

We recall the statement to be proved: Let P be a point of finite order on J whose
`-primary component P` is not rational point. Assume that at least one of the following
statements is true: (1) N is prime to the order of P ; (2) ` is prime to N−1; (3) N is prime
to the discriminant of T (i.e., Hypothesis 1.4 holds). Then there is a σ ∈ Gal(Q/Q)
such that σP − P has order `.

In the proof that follows, we write P ` for the sum of the p-primary components
of P for primes different from `. Thus P = P` + P `. Similarly, we put PN = P − PN .
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Consider the extension Q(P`)/Q, which is non-trivial by hypothesis. To orient the
reader, we note that this extension can be ramified only at ` and at N , the latter prime
being the unique prime of bad reduction of J . According to [2, Th. 2.2], Q(P`)/Q is
automatically ramified at ` except perhaps when ` = 2.

On the other hand, it is plausible that Q(P`)/Q is unramified at N . Let us first
deal with this possibility, which turns out to be especially simple; here the hypotheses
(1)–(3) are irrelevant. According to Proposition 3.3, P` lies in J [I ]. This latter group
contains the Shimura subgroup Σ and the cuspidal group C of J . The source and target
of the resulting natural map Σ ⊕ C → J [I ] have order n; the kernel and cokernel of
this map have order 1 if n is odd and order 2 if n is even.

To fix ideas, we assume for the moment that ` is an odd prime. Then P` lies in
the `-primary part of J [I ], which is the direct sum of the `-primary parts of Σ and C.
Hence P` is the sum of a rational point of J and an element of `-power order of Σ ≈ µn.
Since P` is not rational, this latter element is non-trivial; its order may be written `a

with a ≥ 1. Let σ be an element of Gal
(
Q/Q(µ`a−1)

)
which has non-trivial image

in Gal (Q(µ`a)/Q(µ`a−1)). Then it is evident that σP` − P` has order ` on J . Indeed,
this element is non-trivial since σ does not fix P`, but it is of order dividing ` since σ
does fix `P`. Now the extension Q(µ`a)/Q(µ`a−1) is ramified at `; thus we may take σ
to be in an inertia group for a prime of Q(µ`a−1) which lies over `. This choice ensures
that P ` is fixed by σ. Then σP − P = σP` − P` is a point of order `, as desired.

Next, we suppose that ` = 2; we continue to suppose that P` is unramified at N .
Then J [I ] has even order; i.e., n is even. If P` = P2 lies in Σ + C, then things proceed
as in the case ` > 2. However, as we recalled above, the sum Σ+C, which is not direct,
represents a proper subgroup of J [I ] (namely, one of index 2.) Hence we must discuss
the case where P2, which is a point in J [I ], does not lie in the sum Σ + C.

In this case, the group J [I ] is generated by its subgroup Σ+C of index 2 together
with the point P2. Using Theorem 1.7, we find that

Q(µ2n) = Q(J [I ]) = K(P2),

where K = Q(Σ + C) = Q(µn). The extension Q(µ2n)/Q(µn) is a quadratic extension
which is ramified at 2. We take σ in an inertia group for 2 which fixes K but not P2.
Since 2P2 lies in Σ+C, the difference σP2−P2 is of order 2. We have σP−P = σP2−P2

in analogy with the situation already considered.

Having treated the relatively simple case where Q(P`)/Q is unramified at N , we
assume from now on that P` is ramified at N . This assumption means that there is an
inertia subgroup I ⊂ Gal(Q/Q) for the prime N which acts non-trivially on P`. Hence
there is a τ ∈ I such that the order of τP − P is divisible by `. We seek to construct a
σ ∈ I for which σP − P has order precisely `.

Assume first that (1) holds, i.e., that the order of P is prime to N . Let m be this
order, and let `d be the order of τP −P ; thus, `d divides m. Recall the exact sequence
of I-modules

0→ Hom(X /mX , µm)→ J [m]→X /mX → 0.(2.4)
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Since m is prime to N , the two flanking groups are unramified. It follows, as is well
known, that A := τ − 1 acts on J [m] as an endomorphism with square 0. By the
binomial theorem, we find the equation τd = 1 + dA in EndJ [m]. Therefore

τdP − P = dAP = d(τ − 1)P = d(τP − P )

is a point of order `. We take σ = τd.

Next, assume that (2) holds. Arguing as above, we may find an s ∈ I such that
sPN −PN has order `. Moreover, for each i ≥ 1, we have siPN −PN = i(sPN −PN ).
Consider again (2.4), with m replaced by m′, the order of PN . Let j = φ(m′) (Euler
φ-function). Then sj acts trivially on the groups Hom(X /m′X , µ′m) and X /m′X

in (2.4), so that sjm′
fixes PN . By (2), j is prime to `, and thus i := jm′ is prime to `

as well. Taking σ = si, we find that σP − P has order `, as required.

We now turn to the most complicated case, that where (3) holds, but where (1)
and (2) are no longer assumed. We change notation slightly, writing m (rather than m′)
for the order of PN . Thus m is a power of N . Let s again be an element of I such that
sPN − PN has order `.

We fix our attention once again on (2.4), which we view as a sequence of I-modules.
Concerning the Hecke action, we note that the two groups

M := Hom(X /mX , µm), M ′ := X /mX

are each free of rank 1 over T/mT in view of Theorem 2.3 and the fact that T is
Gorenstein away from the prime 2. The central group J [m] is free of rank 2 over T/mT
because of [9, Ch. II, Cor. 15.2]. The inertia group I acts trivially on X and as the
mod m cyclotomic character χ on µm. Thus M ′ is unramified, and M is ramified if m
is different from 1.

We will be interested in the value of χ(s) ∈ (Z/mZ)∗. Let i be the prime-to-` part
of the order of χ(s), and replace s by si. After this replacement, the order of χ(s) is
a power of `. Also, as we have discussed, this replacement multiplies sPN − PN by i.
Since i is prime to `, sPN − PN remains of order `.

If χ(s) is now 1, then the situation is similar to that which we just discussed.
Namely, sm is the identity on J [m], and we may take σ = sm.

Assume now that χ(s) is different from 1; thus χ(s) is a non-trivial `-power root
of 1. In this case, the T-module J [m] is the direct sum of two subspaces: the space where
s acts as 1 and the space where s acts as χ(s) (which is not congruent to 1 mod N).

Indeed, the endomorphism
s− χ(s)
1− χ(s)

of J [m] is zero on M = Hom(X /mX , µm) and

the identity on M ′ = X /mX . It splits the exact sequence which is displayed above,
giving us an isomorphism of T-modules:

J [m] ≈M ⊕M ′.

The module M ′, viewed as a submodule of J [m], is the fixed part of J [m] relative to
the action of s.
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We claim that there is an h ∈ Gal(Q/Q) such that hPN = PN and such that
hPN ∈ M ′. This claim will prove what is wanted, since the choice σ = h−1sh will
guarantee that the difference σP − P is the `-division point

h−1(shPN − hPN ) + h−1(shPN − hPN ) = h−1(sPN − PN ).

To find the desired h it suffices to produce an element of SLT/mTJ [m] ≈ SL(2,T/mT)
which maps PN into M ′. Indeed, Proposition 6.4 implies that all such elements arise
from HN , i.e., from elements of Gal(Q/Q) which fix torsion points of J with order
prime to N .

To produce the required element of SL(2,T/mT), we work explicitly. Choose
T/mT-bases e′ and e of the free rank 1 modules M ′ and M , and use {e′, e} as a basis
of J [m]. Then M ′ is the span of the vector (1, 0) and M is the span of (0, 1). Let u
and v be the coordinates of PN relative to the chosen basis. We must exhibit a matrix
in SL(2,T/mT) which maps (u, v) to a vector with second component 0.

Because of the hypothesis that N is prime to discT, T ⊗ ZN is a finite product
of rings of integers of finite unramified extensions of QN . Thus T/mT is a product
of rings of the form R = O/mO, where O is the ring of integers of a finite unramified
extension of QN . It suffices to solve our problem factor by factor: given (u, v) ∈ R2, we
must find an element of SL(2, R) which maps (u, v) into the line generated by (1, 0). It
is clear that we may write (u, v) in the form N t(u′, v′), where t is a non-negative integer
and at least one of u′, v′ is a unit in R. Solving the problem for (u′v′) solves it for (u, v),
so we may, and do, assume that either u of v is a unit.

If u is a unit, then (
1 0

−vu−1 1

) (
u
v

)
=

(
u
0

)
.

If v is a unit then
(

0 1
1 −uv−1

) (
u
v

)
=

(
v
0

)
. �
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179–230.

19. G. Shimura, A reciprocity law in non-solvable extensions, Journal für die reine und angewandte

Mathematik 221 (1966), 209–220.

20. J. T. Tate, The non-existence of certain Galois extension of Q unramified outside 2, Contemporary
Mathematics 174 (1994), 153–156.

21. L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83 (second
edition), Springer-Verlag, Berlin-Heidelberg-New York, 1997.


