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ON THE COMPONENT GROUPS AND THE SHIMURA
SUBGROUP OF J, (N)
by

Kenneth A. RIBET

Let N be a positive integer, and let p be a prime number which is
prime to N. Consider the usual modular curves X,(N) and X,(pN) over
Q. Recall that there are two natural degeneracy maps

Xo(pN) = Xo(N),

cf. [7]. If we regard the modular curves as classifying elliptic curves with
T',(pN)- and I',(N)-structures, respectively, then we may interpret these
maps as follows:

An elliptic curve with a I',(pN)-structure may be thought of as
a triple (E, Cn,C}), where E is an elliptic curve, and Cy and
C) are cyclic subgroups on E, of order N and p, respectively.
Forgetting the subgroup C,, we obtain the pair (E, Cy), which
is an elliptic curve with a I',(V)-structure. This construction
defines one of the two degeneracy maps. To define the other, we
divide E by its subgroup C,, thereby obtaining a second elliptic
curve E’. The image of Cy on E’ is a cyclic subgroup Cj on
E', and the pair (E’,C}) is the image of (E,Cn, Cp) under the
second degeneracy map.

We recall also that either of these degeneracy maps may be obtained from
the other by composition with the Atkin-Lehner involution w, of X,(Np).
This involution attaches to (E,Cn, C,) the triple consisting of E’, C}, and
the image C; on E’ of the kernel of multiplication by p on E.



Let J and J’ be the Jacobians
J = Pic®(X,(N)), J' = Pic®(X,(pN)).

The two degeneracy maps introduced above induce by Pic functoriality a
pair of degeneracy maps
a,B:J3 T,

where a corresponds to the first construction discussed above, and 8 to the
second. By Albanese functoriality, they induce a second pair of maps

ap:J' 3 J

These may be considered as the homomorphisms of abelian varieties dual
to a and 3, respectively, once the abelian varieties J and J’ are identified
with their own duals (autoduality of the Jacobian).

The four maps satisfy Goa = Boff = p + 1, since the initial degeneracy
maps are coverings of curves of degree p + 1. At the same time, we have
the formulas

doﬁ = Boa = Tp

on J, where T}, is the indicated Hecke operator. These latter formulas follow
directly from the geometric definition of T),.

In particular, suppose that A is a subgroup of J on which the relation
a = B holds. Applying B or &, we deduce that the formula T, = p + 1
holds on A. Especially, if the relation a = 3 is satisfied for each p prime to
N, the group A is Fisenstein in the sense of Mazur’s article [5]: we have
T, =1+ p for all p prime to N.

The purpose of this note is to illustrate this theme in two contexts.
First, recall the natural covering of modular curves

7: X1(N) = Xo(N). (1)
By Pic functoriality, this covering induces a map
n*: J — Ji(N).

The kernel £ of this homomorphism is the Shimura subgroup of J,(N).



Theorem 1. The relation a = (8 holds on L. In particular, ¥y is Eisen-
stein.

Theorem 1 is nothing but the “easy half” of the Theorem 4.3 of the
author’s article [11]. As explained in [11], the Theorem follows easily from
the assertion that the Atkin-Lehner operator wy of J,(IN) operates on Ly
by the scalar -1. This latter assertion is proved by Mazur in [5] (Propo-
sition 11.7, page 100) in a context where N is supposed prime. In [11], I
remarked that Mazur’s argument in fact works for arbitrary N. We will
verify this below (Lemma 1).

In the second result of this note, we suppose that N is a product My,
where ¢ is a prime number which is prime to M. Consider the fibers over
F, of the Néron models of J and J'. These “special fibers” are extremely
well understood, thanks to the work of Deligne-Rapoport [1] and Raynaud
[10]. They are commutative group schemes which are not (necessarily)
connected. Let ® and &’ be the groups of components of the special fibers
of J and J’, respectively. As we recall below, the groups ® and ®’ are finite
abelian groups which can be expressed in terms of the supersingular points
of X,(M) and X,(pM) in characteristic ¢ [8].

The maps a and § induce by functoriality homomorphisms a,, f.: ® 3
@’

Theorem 2. The maps a. and f. are equal. In particular, the group ® is
Eisenstein.

Theorem 2 has recently been generalized by B. Edixhoven [2] to the case
where ¢ is not necessarily prime to M. Edixhoven bases his work on the
results of Katz-Mazur [4] and his subsequent study of the regular minimal
models of modular curves.

1 Proof of Theorem 1

The proof employs various familiar operators on the two modular curves
Xo(N) and X (N), cf. for example [9], Chapter 2, §5 and [6], §1. The
diamond bracket operators are the elements of the Galois group A of the
covering (1). This group is the quotient of (Z/NZ)" by its subgroup con-



sisting of +1, and we write (a) for the image in A of an integer a prime to
N.

Next we have the Atkin-Lehner involutions wg on X,(N) for each pos-
itive divisor @ of N satisfying (Q, N/Q) = 1. The operator wg of X,(N)
corresponds to the construction which maps an elliptic curve E with a
cyclic subgroup C of order N to the pair (E /C[Q],(C[N/QI®E[Q])/C [Q])
(Here, the bracket notation G[n] is used to denote the kernel of multiplica-
tion by n on an abelian group G.) We write simply w for wy.

Finally, we recall that an involution w = wy can be defined on X;(N),
once a primitive N** root of unity ¢ € Q" is fixed. Here, one regards X;(N)
as classifying pairs (E, P), where P is a point of order N on E. Given such
a pair, choose @ € E[N] such that (P,Q)y = (, where (, )y is the Weil
pairing. Let E be the quotient of E by the subgroup of E generated by
P, and let Q be the image of Q on E. The involution w maps (E, P) to
(B, Q).

The operator w on X;(N) and the diamond-bracket operators are linked
by the easily established commutation relation

w(a)w = (a) ™"

We consider that these operators act on the Jacobians J = J,(N) and

Ji(N) of X,(N) and X;(N) by Pic functoriality.

Lemma 1. The involution w acts on the Shimura subgroup ¥ of J by
multiplication by -1.

Proof. Let D be a divisor of degree 0 on X,(N) whose class in J,(N) lies
in ¥. By the definition of the Shimura subgroup of J, there is a function
f on X;(N) such that #=1(D) = (f). The invariance of (f) under the (a)
shows that we have f o (a) = e(a)f for all a € (Z/NZ)", where € is some
character (Z/NZ)* — Q.

The product of f with the composition fow is then invariant under the
(a) and is thus a function on X,(N). Its divisor is D + wD. 1l

We now may prove Theorem 1 by applying the Lemma to J and J'.
Indeed, we have clearly a(Xn) C Znp, so that the Lemma implies that
wnp acts on a(Zy) by -1. Because a “commutes” with the Atkin-Lehner
operators wy on X,(N) and on X,(Np), the Lemma also shows that wy



acts on a(Xn) by -1. Hence w, acts on a(Xy) by +1. Since 8 = w, 0 a,
Theorem 1 follows.

2 Automorphisms of Elliptic Curves

In this §, we suppose that ¢ is a prime number. Let k be an algebraically
closed field of characteristic g, and let E be a supersingular elliptic curve
over k. According to a well known theorem of M. Deuring, the endomor-
phism algebra

H =End(E) ® Q

of E is a (definite) quaternion algebra over Q of discriminant ¢. The ring
End(E) is known to be a maximal order in ‘H. Consider the group Aut(E)
of units of End(E). This group contains the subgroup {£1}, and it is clear
that any element € of Aut(E) which is different from 3:1 must have order 4
or 6. Indeed, the subalgebra K of H generated by € must be an imaginary
quadratic field, since H is a definite quaternion algebra. The subring Z¢]
of End(E) is then an order in K, so that its unit group is one of the three
groups pz = {:tl}v Ha, He-

Let C be a finite subgroup of E(k). Let End(E,C) denote the ring of
endomorphisms of E which preserve C. Then End(E,C) has finite index
in End(FE), so it is again an order in H. Its group of units Aut(E,C) is a
subgroup of Aut(E) which contains the group {£1}.

Proposition 1. Suppose that Aut(E,C') contains an element € # +1.
Then the elliptic curves E and E/C are isomorphic.

Proof. Let R be the subring Z[e] of End(E,C). As noted above, € has
order 3, 4, or 6, and K = R® Q is either the field of fourth or of sixth roots
of unity. Hence R is the ring of integers of K, and therefore a principal
ideal domain. Let n be the exponent of C, so that C is in particular a
subgroup of the kernel E[n] of multiplication by n on E. It is clear that
the action of R on E makes E[n] a free rank-1 module over R/nR. This
follows, for instance, from the standard fact that the Tate module T,(E) is
free of rank 1 over R ® Z, for each prime ¢ # q.

Fixing an R-isomorphism between E[n] and R/nR, we may identify C
with the quotient I/nR, for some ideal I of R containing n. Since R is
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a principal ring, there is an element r € R such that nR = rI. Then
C coincides with the kernel E[r] of multiplication by r on E. Indeed, this
kernel is contained in E[n], since n is divisible by r. Computing in the group
of fractional ideals of R, we see that I/nR is the kernel of multiplication by
r on R/nR. It follows that C is the kernel of multiplication by r on E[n].

The statement of the Proposition now follows, since multiplication by r
induces an isomorphism between E/C and E. |

As a variant, we suppose given a second finite group D of E(k) whose
intersection with C is trivial. Write E for E/C, and let D be the image
(D& C)/C of Don E.

Proposition 2. Suppose that there is an automorphism € # +1 of E which
preserves each of C and D. Then there is an isomorphism E ~ E which
takes D to D.

Proof. Let R and r be as in the proof of Proposition 1. The endomorphism
r of E then maps D to itself. When we view r as a map E/C — E, r
maps the subgroup D of E/C to the subgroup D of E. This sets up an
isomorphism as claimed, since D and D have the same order. il

3 Monodromy Pairings

In this §, we recall the combinatorial desciptions of ® and &' which were
alluded to above. We assume that M, ¢,... are as in the statement of
Theorem 2. We take k to be an algebraic closure of F,.

Let S be the set of k-valued supersingular points of X,(M). Thus § is
the set of isomorphism classes of pairs (E, Cyr), where E is a supersingular
elliptic curve over k and Cjs C E is a cyclic subgroup of order M. For each
such pair, pose

K(E,Crr) = %#Aut(E,CM).

The formula

(3o nes, > mgs) =3 nemk(s)

SES SES SES

defines a bilinear pairing on Z°. Let X C ZS be the group of degree-0
divisors on §. Let (, ) be the restriction of the pairing (, ) to X. We



view (, ) x as an injection
tx 1 X — X*
where X* = Hom(X, Z).
Formula. The component group ® is the cokernel of v x.

A general formula of this type was deduced by Grothendieck in SGA7
from the work of Raynaud [10]. (See [3], 12.5 and 12.10.) To apply it
to Jo(¢M)p,, one uses the description given by Deligne-Rapoport (1] of
Xo(qM) over Z,.

By analogy, we have a similar description of @’ in which § is replaced
by &’, the set of isomorphism classes of triples (E,Cuy, C)p), where C) is a
cyclic subgroup of E of order p. We let L and (, ), be the analogues of X
and (, ) y. The pairing (, ), on L x L may be viewed as an injection

o L L*,

whose cokernel is ®’.

In the descriptions of ® and ®’, the groups X and L intervene as char-
acter groups of tori. In general, if A is an abelian variety over Q, which
has semistable reduction, we let X(A) be the free finite-rank abelian group
which is defined as follows. The special fiber of the Néron model of A is
an extension of a finite “group of components” $(A) by a connected semi-
abelian variety A°. This latter object is in turn an extension of an abelian
variety by a torus T', and we let

X(A) = Homy(T, Gm)

be its character group. From the results of (1] and §12.3 of [3], we find
canonical isomorphisms

X(J) =~ X, X(J") =~ L.
For each A with semistable reduction, there is a monodromy pairing
(,)4: X(A)x X(A") - Z,

where A! is the abelian variety dual to A. This pairing may be regarded as
an injection

ta: X(AY — X(A),



and the cokernel of this injection is the group ®(A4). Given a homomorphism
f: A — B between abelian varieties with semistable reduction, we may read
off fu: ®4 — ®p from a commutative diagram

0 - X(4Y) - XA - o4 —- 0

! ! !
0 - X(BY) - X(B* - &B) — 0.

Here the map X(A!) — X(B?) corresponds to the map on tori induced by
the homomorphism f*: A* — B! dual to f, while the map X(4)* — X(B)*
is Hom(f*,Z), where f*: X(B) — X(A) corresponds to the map on tori
induced by f.

This general description specializes to a concrete interpretation of the
maps au, B.: ® 3 ®'. The Jacobians J and J’ are each naturally autodual,
so that ot and B! are each homomorphisms J’ — J. These homomorphisms
are in fact & and 3, because of the general principle that maps on Jacobians
induced by Pic functoriality are dual to maps on Jacobians induced by
Albanese functoriality. The maps on character groups

o, (" : L3 X, &, X3 L
may be computed using the ideas of [10].

The result of the computation, which is easy to guess, is as follows. Let
0:8" — S and 7: §' — S be the (degeneracy) maps which take (E,Cpy, C,)
to (E,Cum) and (E/C,,, (Cu® C,,)/Cp), respectively. These define a pair of
linear maps ZS' 3 ZS and then, by restriction, two maps I =3 X. These
homomorphisms are a* and (3*, with a corresponding to o and 3 to .

On the other hand, the map &*: X — L is induced from the linear map
ZS — Z5' which maps (E,Cy) to the formal sum

Z(E7 Chla Cp)
CP

in which C, runs over the p 4+ 1 different subgroups of E of order p. A
similar description is available for §*.

For later use, we introduce the notation w for the Atkin-Lehner involu-
tion wy: 8’ — S'. It is given explicitly by the formula

(E,Cm,C,) > (E/Cy,(Cu & Cy)/Cy, Elp)/C).

This involution satisfies a*ow = f* and wod* = §*.



4 Proof of Theorem 2

Consider the map n = Hom(a* — *,Z) : X* — L*. Using the description
provided above, we readily see that the Theorem 2 amounts to the following
statement: The image of n) is contained in the image of t;,: L — L*. To prove
this fact, we consider an arbitrary element ¢ of X*. For convenience, we
lift ¢ to a linear form on ZS, which we again call ¢. Let £ be the sum

> plos—7s)-s€ z5'.
€S’

The degree of £ is the difference

Y plos) = > w(7s).

SES’ SES

The two sums are, however, equal, since we have oow = 7 and since w is
a permutation of §’. Hence £ has degree 0, which is to say that it is an
element of L. We shall establish the equality

v(€) = n(e),
thereby verifying that n(y) is in the image of ¢f.
To prove this formula, take two elements y; and y; of §’. We must show
(6,1 — y2) , = n(e)(y1 — v2)-

The left-hand side of this desired equality is the difference

ployr — y1) - k(y1) — oy — 7y2) - £(y2)-
The right-hand side of the equality is identical to this difference, except that
the factors k(y;) do not appear. Hence it suffices to record the following
Lemma. Let y € §'. Suppose that we have k(y) > 1. Then oy = Ty.

This Lemma, in fact follows immediately from Proposition 2 when we
choose C = €, and D = C) in the notation of that Proposition.



References

[1] Deligne, P. and Rapoport, M. Les schémas de modules de courbes
elliptiques. Lecture Notes in Math 349, 143-316 (1973)

[2] Edixhoven, B. To appear.

[3] Grothendieck, A. SGA7 I, Exposé IX. Lecture Notes in Math. 288,
313-523 (1972)

[4] Katz, N.M. and Mazur, B. Arithmetic Moduli of Elliptic Curves. An-

nals of Math. Studies 108. Princeton: Princeton University Press,
1985

[5] Mazur, B. Modular curves and the Eisenstein ideal. Publ. Math. IHES
47, 33-186 (1977)

(6] Kenku, M.A. and Momose, F. Automorphism groups of the modular
curves Xo(IN). Compositio Math. 65, 51-80 (1988)

[7] Mazur, B. Rational isogenies of prime degree. Invent. Math. 44, 129-
162 (1978)

[8] Mazur, B. and Rapoport, M. Behavior of the Néron model of the
jacobian of X,(NN) at bad primes. Appendix to [5].

[9] Mazur, B. and Wiles, A. Class fields of abelian extensions of Q. Invent.
Math. 76, 179-330 (1984)

[10] Raynaud, M. Spécialisation du foncteur de Picard. Publ. Math. IHES
38, 27-76 (1970)

[11] Ribet, K. Congruence relations between modular forms. Proc. Inter-
national Congress of Mathematicians 1983, 503-514

(Texte regu le 7 juin 1988)

K. RIBET

University of California
BERKELEY

CALIFORNIA 94720

U.S.A.



