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GENERALIZATION OF A THEOREM OF TANKEEV

by

K. A. RIBET

Let E bea CM field, and let 2d be the degree of E over . Let 8
be the set of field embeddings E + €, and define W to be the free Q-veeter

space on 8

W={2Xn o|ln €@}.
OESO (¢)

We view W as a left G module, where G = Gal((-)/Q) and 5 is the algebraic
closure of © in €. For each subset S of 8 , we identify S with X oceW

o€S
and let WS be the .G-submodule of W generated by S.

Consider the special case where S isa CM type, a subset of 8 such that
8 is the disjoint union of S and its complex conjugate S . We see easily that

WS is contained in

v={Z nooeWI n_+n_ is independent of ¢ },

a (d+1)- dimensional G - stable subspace of W . The CM types S for which



17-02

Ws =V are called non-degenerate [1], [3]. To motivate interest in such S,

we mention the following easily proved property that they possess : suppose that

A is a subset of 8 such that all intersections

ANgS (ge@G)

have the same number of elements. Then A is stable under complex conjugation,

According to H. Pohlmann [2], the Hodge conjecture is therefore true for all CM

abelian varieties having complex multiplication by E and CM type S .

It is obvious that a non-degenerate CM type must be primitive in the sense
that it arises from no CM subfield of E which is strictly smaller than E
([4, § 8.2]). Conversely, one may ask for sufficient conditions for a primitive

CM type to be non-degenerate. If S is primitive, we have the double inequality
(3]

(*) ].og2 (4d) < dim WSS d+1 .

Clearly, (*) implies that a primitive CM type is non-degenerate whenever

d=1, 2, or 3.

An example of Mumford [2] shows that there exist primitive CM types with
d=4 which are not non-degenerate. It is tempting to guess that such examples
must exist for each d>4 . Surprisingly, Tankeev showed recently [5] that
primitive CM types are non-degenerate if d= 5. Here we present a generali-

zation, suggested by F. Hazama :

THEOREM. - If d is a prime number and S is primitive, then S is non-dege-

nerate.
(Because of (*), we may assume that d is an odd prime.)

Proof. - Let L be the Galois closure of E in €, i.e. the smallest subfield of
C containing all ¢g(E) with 0€8. The action of G on W factors through
Gal(L/R). Moreover, the assomption that S is primitive implies that Ga'(L/Q)
acts faithfully on WS . (A priori, the kernel of the action of G on WS corres-
ponds to the Galoit closure L' of the CM subfield of € which is '"dual’ to

(E,S). We have L = L' when S is primitive.)
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Because d divides [ E : D], d divides the order of Gal(L/R). Let geG
be such that g induces an element of Gal(L/D) of order d. Then g induces

an automorphism of W, of order d . To prove that W_,= V we must show that

S S
the dimension of Ws is at least d+1 . Now the action of g on WS is semi-
simple (because of finite order), and any g-stable subspace of WS on which g

acts non-trivially has (by a well known lemma) dimension at least (d-1). To

prove the theorem, it suffices to exhibit two linearly independent vectors of W

S
which are fixed by g .
Consider
d-1
v=S+gS+..+¢g S e WS
and the '"'norm' element 3 of W The latter belongs to W_ because it may

S
be written as the sum of S and its complex conjugate.

Both element are visibly fixed by g . Moreover, when d is odd, v cannot
be a rational multiple of § . Indeed, if it were such a muttiple, it would have

3

to be an integral multiple of 8 . Writing

Lon 0,

B

<
"

[w]

we would find a divisibility 2d]: n . Since X n_= d2 is not divisible by 2d,

a

v and 8§ are linearly independent and the theorem is proved.
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