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1. Introduction.

Let M ≥ 1 be an integer. Let Jo(M) be the Jacobian Pico(Xo(M)) of the modular curve

Xo(M)Q. For all n ≥ 1, let Tn be the nth Hecke correspondence on Xo(M). Write

again Tn for the endomorphism T ∗
n of Jo(M) induced by the correspondence Tn. Let

TM = Z[. . . , Tn, . . .] be the subring of End(Jo(M)) generated by the Tn with n ≥ 1. The

ring TM may be identified with the ring generated by the Hecke operators Tn acting on

the complex vector space of weight-2 cusp forms on Γo(M).

Suppose that p is a maximal ideal of TM . The residue field TM/p is a finite field k,

whose characteristic will be denoted p. Attached to p is a semisimple continuous represen-

tation

ρp : Gal(Q/Q) → GL(2, k),

unramified outside Mp, with the property that ρp(ϕr) has characteristic polynomial X2−

TrX + r (mod p) for each prime number r prime to Mp. (Here, ϕr denotes a Frobenius

element of Gal(Q/Q) for the prime number r.) The representation ρp is well defined up

to isomorphism.

Consider the group of p-division points

Jo(M)[p] :=
{

x ∈ Jo(M)(Q)
∣∣ λx = 0 for all λ ∈ p

}
,

i.e., the “kernel of p on Jo(M).” Assume:
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i. The representation ρp is irreducible over k.

ii. The prime number p is odd.

Then ρp is an absolutely irreducible representation of Gal(Q/Q), and a theorem of

Boston, Lenstra, and the author [1] shows that Jo(M)[p] is a direct sum of representations

isomorphic to ρp. The associated multiplicity µp is the number of summands in the direct

sum:

µp =
1
2

dimk Jo(M)[p].

Since Jo(M)[p] is non-zero, µp is a positive integer. Thus Jo(M)[p] is “multiplicity free”

(in the sense that µp ≤ 1) if and only if we have µp = 1.

Using ideas of Mazur [4], the author proved that µp = 1 whenever M is prime to p

([10], Theorem 5.2). In [5], Mazur and the author considered the case where p exactly

divides M , i.e., where M = Np for some integer N ≥ 1 which is prime to p. The principal

result of that article states that µp = 1 provided that ρp is not finite at p (in the sense

of Serre [12], p. 189), or equivalently ([10], Theorem 6.1) provided that ρp is not modular

of level N . These results were motivated by applications to Serre’s conjectures [12], and

specifically are used in showing that certain mod p Galois representations which are known

to be modular of some level are in fact modular of the conjectured level (see [10]).

In the present article, we explore the situation when p exactly divides M but ρp

is allowed to be finite. Although this situation does not appear in applications to Serre’s

conjectures, the author hopes that the present paper will shed light on the general problem

of computing µp.

In order to state our results, we introduce the p-old and p-new subvarieties A and B

of Jo(M). We assume that M = Np, and that p is prime to N . Recall [8] that the abelian

varieties Jo(N) and Jo(Np) are connected by a natural “degeneracy map”

d : Jo(N)× Jo(N) −→ Jo(Np),

whose kernel Σ is the finite group consisting of all pairs (σ,−σ), where σ runs over the

Shimura subgroup of Jo(N), i.e., the kernel of the map Jo(N) → J1(N) induced by the

standard covering X1(N) → Xo(N). The p-old subvariety of Jo(Np) is the image A of d.

The p-new subvariety of Jo(Np) is the “orthogonal complement” B to A under the natural
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autoduality Jo(Np) →̃ Jo(Np)∨. In other words, the image of B in Jo(Np)∨ under the

isomorphism Jo(Np) →̃ Jo(Np)∨ is the kernel of the map Jo(Np)∨ → A∨ which is dual

to the inclusion of A in Jo(Np). One has Jo(Np) = A + B, and the group ∆ := A ∩ B is

finite; this group was calculated in [8].

In the following discussion, we will write simply J for Jo(Np). Also, we will let A[p]

and B[p] be the analogues of Jo(Np)[p] for A and B, respectively. When (i) and (ii) are

satisfied, A[p] and B[p] are each direct sums of representations isomorphic to ρp. We say

that A[p] or B[p] is multiplicity free if the corresponding direct sum has at most one term.

Thus B[p], for example, is multiplicity free if it is either zero, or else of dimension two

over k. Finally, we write Jo(N)2 for the product Jo(N)× Jo(N).

Assume that the above hypotheses (i) and (ii) are satisfied.

Proposition 1. The representation ρp is finite at p if and only if A[p] is non-zero.

Theorem 1. If A[p] = 0, then µp = 1.

Proposition 1 results easily from known facts; its proof will be given in §2. Using the

Proposition, we see immediately that Theorem 1 is a restatement of the result of [5] which

was introduced above.

In this article, we shall prove the following complement:

Theorem 2. Suppose that (i) and (ii) are satisfied. Then the group J [p] is multiplicity

free if and only if the group B[p] is multiplicity free.

As mentioned above, the condition that J [p] be multiplicity free is equivalent to the equality

µp = 1. Hence Theorem 2 provides a means of verifying this equality even when the

condition A[p] = 0 of Theorem 1 is not necessarily satisfied.

Corollary. Suppose that (i) and (ii) are satisfied and that B is an elliptic curve. Then

J [p] is multiplicity free.

The Corollary follows directly from the Theorem. Indeed, suppose that B is an elliptic

curve. If B[p] is non-zero, then p ⊂ TpN generates a non-trivial ideal in the image of TpN

in EndB. Since this image is isomorphic to Z, we have B[p] = B[p], and the residue field
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of p is the prime field Fp. Hence B[p] is either 0, or else of dimension two over Fp. In

particular, B[p] is multiplicity free.

Theorem 2 is obtained as a consequence of two results proved below. Namely, in §2, we

prove, under the hypotheses of Theorem 2, that A[p] is multiplicity free (Theorem 3). In

§3, we show that B[p] = J [p] whenever B[p] is non-zero (Theorem 4). These together imply

Theorem 2 by an elementary argument, in which we consider separately the case where

B[p] is 0 and the case where it is non-zero. Indeed, suppose first that B[p] = 0. Then B[p]

is certainly multiplicity free, and Theorem 2 states that J [p] is multiplicity free. However,

∆[p] = 0, from which it follows that the p-divisible group ∪iJ [pi] is the direct sum of the

analogous p-divisible groups for A and B. This gives, in particular, J [p] = A[p] ⊕ B[p],

so that J [p] = A[p], because B[p] is 0. Theorem 3 then implies that J [p] is multiplicity

free, as desired. On the other hand, if B[p] is non-zero, then Theorem 4 states that J [p]

and B[p] are equal, so that one is multiplicity free if and only if the other is.

It is perhaps worth stressing that our results prove that µp = 1 whenever one of A[p]

and B[p] vanishes and the hypotheses (i) and (ii) are satisfied. Indeed, suppose this to be

the case, and assume first that A[p] vanishes. Then an argument analogous to that just

given shows that J [p] = B[p], so that Theorem 2 is trivially true (as is Theorem 4). By

Theorem 1, we have µp = 1; i.e., J [p] = B[p] is multiplicity free. Next, assume that B[p]

vanishes. Then, as noted above, we have A[p] = J [p]. Also, A[p] is multiplicity free by

Theorem 3. Hence µp = 1 in this case as well.

Assume now that both A[p] and B[p] are non-zero, and that (i) and (ii) are satisfied.

Then our results give the relations

0 ⊂ A[p] ⊆ B[p] = J [p],

and show that A[p] is multiplicity free. We have µp = 1 in this situation if and only if all

three groups A[p], B[p] and J [p] coincide. By the Corollary above, these groups do in fact

coincide if B is an elliptic curve, although perhaps not in general. (The author knows of

no example where they fail to coincide.)

We close this Introduction with a numerical example. Take N = 11 and p = 3. The

dimensions of Jo(11) and Jo(33) are respectively 1 and 3. Thus, A is isogenous to a product
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of two copies of the elliptic curve Jo(11), while B is an elliptic curve of conductor 33. By

the Corollary to Theorem 2, J [p] is multiplicity free for each prime p of T33 which divides 3.

One can verify that there are in fact two p’s, and that ρp is finite for each p. (In other

words, Theorem 1 applies for neither of them.) To describe the two p, we let E = Jo(11)

and use the degeneracy map d to identify A[3] with the product E[3] × E[3]. The Hecke

operator T3 of J induces the operator (x, y) 7→ (−x,−x) on E[3] × E[3]. Accordingly,

the diagonal image V1 of E[3] in E[3] × E[3] is T33-stable, and T33 acts on V1 via a

homomorphism φ1 : T33 → F3 which maps T3 to −1. If p1 = kerφ1, then Theorem 4

implies that B[p1] = J [p1] = A[p1] = V. Similarly, if V2 is the subspace 0 ⊕ E[3] of A[3],

then T33 acts on V2 via a homomorphism φ2 : T33 → F3 which maps T3 to 0. If p2 = kerφ2,

then B[p2] = 0, and we have J [p2] = A[p2] = V ′.

2. Study of A[p].

Let p be an odd prime, and suppose that N is a positive integer prime to p. Write T for

the ring TNp. The p-old subvariety A of Jo(pN) is T-stable. We define the p-old quotient

of T to be the image TA of T in End(A). Similarly, we define a maximal ideal p of T to

be p-old if and only if it arises by pullback from a maximal ideal of TA. It is clear that p

is p-old if and only if A[p] is non-zero. Thus, Proposition 1 states, for p|p such that ρp is

irreducible, that ρp is finite at p if and only p is p-old.

We now prove this Proposition. Assume, first, that ρp is finite at p. Theorem 6.1

of [10] then states that ρp is “modular of level N .” (The hypotheses of that theorem are

satisfied because the residue characteristic of p, which is p, is not congruent to 1 mod p.)

In fact, the argument given in [10] proves the apparently stronger fact that p is p-old.

Namely, under the finiteness assumption, the author constructs a certain subgroup V of

the fiber at p of the Néron model for Jo(Np). Write JFp for this fiber. The discussion on

pp. 470–471 of [10] shows that V cannot be a subgroup of the maximal torus T of JFp
.

Furthermore, the argument given to prove Lemma 6.3 of [10] shows then that V must map

non-trivially to the product Jo(N)Fp
× Jo(N)Fp

, which is the maximal abelian variety

quotient of the connected component of the identity in JFp . Since V is annihilated by p,

it follows from [10], Theorem 3.11 that p is p-old.
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Suppose, conversely, that p is p-old. Then A[p] is non-zero. Since A[p] isomorphic

to a direct sum of copies of the representation ρp, we may choose a two-dimensional

Gal(Q/Q)-stable submodule V of A[p] which is a model for the representation ρp. To

show that ρp is finite, we must produce a finite flat T/p-vector space scheme V over Zp

such that V(Qp) and V are isomorphic representations of Gal(Qp/Qp). (We identify this

latter Galois group with a decomposition group for p in Gal(Q/Q).) One has inclusions

of Gal(Qp/Qp)-modules V ⊆ A[p] ⊆ A[p], and the latter group extends to a finite flat

group scheme S of type (p, . . . , p) over Zp because A has good reduction at p. Hence V

extends to a finite flat group scheme V of this type: the Zariski closure of V in S. Because

p > 2, the action of T/p on V extends uniquely to V in view of Raynaud [6], 3.3.6. This

completes the proof of Proposition 1.

Consider the subring R of TN which is generated by all Tn with n prime to p. For each

maximal ideal m of R, we denote by ρm the semisimple two-dimensional representation of

Gal(Q/Q) over R/m which is characterized by the property analogous to that given above

for the ρp.

Proposition 2. The index of R in TN is finite and prime to p.

To prove the Proposition, we can (and shall) assume that N ≥ 11, since otherwise TN = 0.

This enables us to apply a result of N. Katz [3] concerning the operator θ = q d
dq on weight-

k mod p modular forms, for which the assumption N ≥ 3 is made. The result proved by

Katz had been proved by Serre and Swinnerton-Dyer (see [11], [14]) in the case N = 1.

Let S be the space of weight-2 cusp forms on Γo(N) with coefficients in Fp. For each

f ∈ S, let
∑

n≥1 an(f)qn ∈ Fp[[q]] be the q-expansion of f . As is well known (cf. [7], §2),

an argument due to Shimura ([13], Chapter 3) shows that the pairing

TN/pTN × S −→ Fp, (T, f) 7→ a1(f |T )

is perfect. Let A be the subring of TN/pTN generated by the Tn with n prime to p.

Suppose that f is orthogonal to A in the sense that a1(f |Tn) = 0 for all n prime to p.

Since a1(f |Tn) = an(f), the power series
∑

n≥1 an(f)qn is then annihilated by θ. By

the theorem of Katz, the sum
∑

n≥1 an(f)qn vanishes. (The point is that
∑

n≥1 an(f)qn,
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viewed as the mod p modular form f , otherwise has filtration w(f) = 2. Since 2 is prime

to p, the filtration of θf is then 2 + p + 1. This contradicts the vanishing of θf .) The

subspace of S orthogonal to A is then 0, which proves that A = TN/pTN . The Proposition

now follows immediately, since TN is free of finite rank over Z, and since A is the image

of R in TN/pTN .

Corollary. Let p be a maximal ideal of TN of residue characteristic p. Let m = R ∩ p.

Then the natural inclusion R/m ↪→ TN/p is an isomorphism, and we have Jo(N)[p] =

Jo(N)[m].

The first statement is an immediate consequence of the Proposition, since the index of

R/m in TN/p is simultaneously a power of p and a divisor of the index i = (TN :R) of R

in TN . For the second, we must show that a point x of Jo(N) which is annihilated by m

is automatically annihilated by p. Let λ be an element of p. Then iλ ∈ m. Hence x in

annihilated by iλ, and it is also annihilated by pλ, since p ∈ m. Thus x is annihilated by

λ, since (i, p) = 1.

Proposition 3. Let m be a maximal ideal of R of residue characteristic p. Suppose that

the associated representation ρm of Gal(Q/Q) is irreducible. Then Jo(N)[m] has dimension

two over R/m.

By a theorem of Cohen-Seidenberg, we may find a maximal ideal p of TN such that

m = p ∩R. The Proposition follows from the above Corollary, together with the fact that

Jo(N)[p] has dimension two over TN/p ([10], Theorem 5.2b).

Remark: Proposition 2 becomes false if we allow the case p = 2. Indeed, if N = 23,

then TN is isomorphic to the ring of integers of the quadratic field Q(
√

5). Let R be the

subring of TN which is generated by the Tn with n odd. Then the index of R in TN is

divisible by 2. For more details concerning this example, see [2], §4. (The author wishes

to thank G. Shimura for pointing out this example to him some years ago.)

Recall now that the subring of TA generated by the Hecke operators Tn with n prime

to p may be identified with the ring R ⊆ TN which appears above. Indeed, TN is a

subring of the ring of endomorphisms of Jo(N), which acts diagonally on the product
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Jo(N)2 = Jo(N) × Jo(N). This gives a natural action of TN on Jo(N)2. This action

preserves the finite subgroup Σ of Jo(N)2, and so descends to a faithful action of TN on

the quotient A. If n is prime to p, the operator Tn of TN induces the operator labeled

Tn in TA. Hence the subring R of TN generated by such Tn maps isomorphically onto

the indicated subring of TA. Note, however, that the pth Hecke operator in TN maps

to an endomorphism of A which is not necessarily an element of TA. Let τ denote this

element of TN . Then, with our conventions, the operator Tp ∈ TA is induced by the

endomorphism (x, y) 7→ (τx+py,−x) of Jo(N)2, which we regard as the matrix
(

τ p
−1 0

)
of endomorphisms of Jo(N).

Theorem 3. Let p be a maximal ideal of T with residue characteristic p. Assume that

ρp is irreducible, and that A[p] is non-zero. Then A[p] is of dimension two over T/m.

Since A[p] is non-zero, the maximal ideal p is p-old. By abuse of notation, we consider

that p is a maximal ideal of TA. Set m = R ∩ p. Considering first the action of R on

Jo(N), we find that Jo(N)[m] has dimension two over R/m (Proposition 3). The kernel

Σ of the quotient map Jo(N)2 → A is Eisenstein [9], and therefore prime to m (cf. [10],

Theorem 5.2c). Therefore, A[m] may be identified with Jo(N)[m]2, and in particular has

dimension four over R/m.

We have TA/p ⊇ R/m and A[m] ⊇ A[p]. Also, the dimension of A[p] over TA/p is

a multiple of 2. Hence, this dimension is either 2 or 4, with the latter case occurring if

and only if we have both A[p] = A[m] and TA/p = R/m. However, if these equalities are

satisfied, then Tp ∈ TA operates on Jo(N)[m]2 as a scalar, i.e., as an element of R/m. This

is impossible, since the operation of Tp is given by the matrix
(

τ 0
−1 0

)
, which is clearly

not a scalar because of the −1 in the lower-left corner. (The element τ of TN is not in R;

however τ preserves Jo(N)[m] and acts on Jo(N)[m] as a scalar, in view of the corollary to

Proposition 2.) The Theorem is therefore proved.

Remark: The example of level 23 mentioned above shows that Theorem 3 becomes false if

the prime p = 2 is not excluded. Indeed, suppose that p = 2 and that N = 23. Let A again

be the p-old subvariety of Jo(pN) = Jo(46). The group A[2] is naturally isomorphic to

Jo(23)[2]⊕ Jo(23)[2], since the kernel of the degeneracy map d has order 11 = num
(

22
12

)
,
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which is prime to 2. For n odd, the action of Tn on A[2] is the diagonal action of Tn

coming from the action of T23/2T23 on Jo(23)[2]. The ring T23/2T23 is the field with

4 elements, because 2 remains prime in Q(
√

5). The Tn with n odd map to elements of

the prime field F2, since they lie in the order of T23 having index 2 in T23. The element

T2 of T46 induces on Jo(23)[2] ⊕ Jo(23)[2] the map (x, y) 7→ (τx,−x), where τ is the

automorphism of Jo(23)[2] coming from the Hecke operator T2 of T23. It follows that all

Tn ∈ T46 act as elements of F2 on 0 ⊕ Jo(23)[2], with T2 acting as 0. If p ⊆ T46 is the

kernel of the map T46 → F2 representing this action, then A[p] contains 0⊕Jo(23)[2], and

therefore has dimension≥ 4 over T46/p = F2. The associated 2-dimensional representation

ρp of Gal(Q/Q) is irreducible as follows from [4], Chapter II, Proposition 14.1. This

representation is an F2-model for Jo(23)[2], considered as a representation of Gal(Q/Q)

over F4.

3. Study of B[p].

In this §, N is again a positive integer, and p a prime which is prime to N . We do not

make the assumption p > 2. The p-old and p-new subvarieties of J = Jo(Np) are again

denoted A and B, respectively. Their intersection is a finite subgroup ∆ of J . Consider

a maximal ideal p of T = TNp for which ρp is irreducible. (We do not assume that the

residue characteristic of p is p.)

Theorem 4. If B[p] 6= 0, then B[p] = J [p].

We have an exact sequence

0 → ∆ → A×B → J → 0,

where ∆ is embedded “diagonally” in A × B, and where this product is mapped to J by

(x, y) 7→ x− y. View J [p] as the group R/∆, where

R = { (x, y) ∈ A(Q)×B(Q) | (λx, λy) ∈ ∆ for all λ ∈ p }.

Let π : R → A be the projection (x, y) 7→ x. We may identify kerπ with B[p]. Further,

since R contains the diagonal image of ∆, the image π(R) of π contains ∆, regarded
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as a subgroup of A. From this perspective, it is clear that the theorem amounts to the

statement that π(R) coincides with ∆ in A.

Let I ⊆ T be the annihilator of B in T, i.e., the kernel of the natural map T → EndB.

The hypothesis B[p] 6= 0 is equivalent to the statement that p contains I. For λ ∈ I and

(x, y) ∈ R, we then have λx = 0, since (λx, λy) is necessarily the 0-element of ∆. In other

words, we have ∆ ⊆ π(R) ⊆ A[I]. To conclude the proof, we will show that the quotient

A[I]/∆ involves only “Eisenstein primes” of T. This gives the desired equality ∆ = π(R),

since π(R)/∆ is killed by p and since ρp is irreducible.

Consider the element γ := T 2
p − 1 of T. By (3.7) and (3.10) of [10], Tp coincides with

the negative of the Atkin-Lehner involution on B. Therefore, γ = 0 on B, so that γ ∈ I.

Accordingly, we have A[I] ⊆ A[γ]. Let τ again denote the pth Hecke operator on Jo(N).

Since the restriction to A of Tp is induced by the endomorphism
(

τ p
−1 0

)
of Jo(N)2, γ

restricts to the endomorphism of A induced by the product
(
−1 τ

0 −1

) (
1 + p τ

τ 1 + p

)
.

Abusing notation, we will again refer to this product as γ.

The main theorem of [8] relates ∆ to the kernel Ω of
(

1 + p τ
τ 1 + p

)
on Jo(N)2.

Firstly, Ω contains the kernel Σ of the quotient Jo(N)2 → A. Secondly, we have ∆ = ∆̃/Σ,

where ∆̃ is a subgroup of Ω such that the quotient Σ∗ := Ω/∆̃ is naturally dual to Σ. Both

groups Σ and Σ∗ are Eisenstein in the sense that the relation Tl = 1 + l holds on each of

them, for all primes l prime to pN . The group Ω is also the kernel of γ on Jo(N)2, since(
−1 τ

0 −1

)
is visibly an automorphism of Jo(N)2.

We claim that Q := A[γ]/∆ is an extension of Σ by Σ∗. To see this, apply the Snake

Lemma to the diagram

0 → Σ → Jo(N)2 → A → 0
↑ 0 ↑ γ ↑ γ

0 → Σ → Jo(N)2 → A → 0

to obtain a 4-term exact sequence 0 → Σ → Ω → A[γ] → Σ → 0. Equivalently, this gives

a 3-term exact sequence 0 → Ω/Σ → A[γ] → Σ → 0. Then Q maps to Σ = A[γ]/(Ω/Σ)

with kernel (Ω/Σ)/(∆̃/Σ). The latter group is Ω/∆̃ = Σ∗.

The claim implies that the support of Q contains only primes which divide the ideal

generated by all Tl − (1 + l). It follows that p is not in the support of Q, cf. [10], 5.2c. A
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fortiori, p is not in the support of A[I]/∆. As noted above, this proves that π(R) = ∆,

and concludes the proof of the Theorem.

References.

1. N. Boston, H.W. Lenstra, Jr., K. A. Ribet, Quotients of group rings arising from

two-dimensional representations, CRAS (Paris). To appear.

2. K. Doi, H. Naganuma, On the jacobian varieties of the fields of elliptic functions II,

J. Math. Kyoto Univ. 6 (1967), 177–185.

3. N.M. Katz, A result on modular forms in characteristic p, Lecture Notes in Math.

601 (1977), 53–61.

4. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977)

33–186.

5. B. Mazur, K.A. Ribet, Two-dimensional representations in the arithmetic of modular
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