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Introduction

In a manuscript on mod ` representations attached to modular forms [26],
the author introduced an exact sequence relating the mod p reduction of
certain Shimura curves and the mod q reduction of corresponding classical
modular curves. Here p and q are distinct primes. More precisely, fix a
maximal order O in a quaternion algebra of discriminant pq over Q. Let M
be a positive integer prime to pq. Let C be the Shimura curve which classifies
abelian surfaces with an action of O, together with a “Γo(M)-structure.”
Let X be the standard modular curve Xo(Mpq). These two curves are, by
definition, coarse moduli schemes and are most familiar as curves over Q
(see, for example, [28], Th. 9.6). However, they exist as schemes over Z: see
[4, 6] for C and [5, 13] for X .

In particular, the reductions CFp and XFq of C and X , in characteristics
p and q respectively, are known to be complete curves whose only singular
points are ordinary double points. In both cases, the sets of singular points
may be calculated in terms of the arithmetic of “the” rational quaternion
algebra which is ramified precisely at q and ∞. (There is one such quater-
nion algebra up to isomorphism.) In [26], the author observed that these
calculations lead to the “same answer” and concluded that there is a 1-1
correspondence between the two sets of singular points. He went on to re-
late the arithmetic of the Jacobians of the two curves X and C (cf. [14] and
[10, 11]).

The correspondence of [26] depends on several arbitrary choices. More
precisely, [26] used Drinfeld’s theorem [6] to view the Shimura curve C over
Zp as the quotient of the appropriate “p-adic upper half-plane” by a discrete
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subgroup Γ of PGL2(Qp). This group is obtained by choosing: (1) a rational
quaternion algebra H of discriminant q, (2) an Eichler order in H of level
M , and (3) an isomorphism H ⊗ Qp ≈ M(2,Qp). The conjugacy class of
Γ in PGL2(Qp) is independent of these choices, but there is no canonical
way to move between two different Γ’s. This flabbiness makes awkward the
verification that the correspondence of [26] is compatible with the natural
actions of Hecke operators Tn on X and on C.

The main conclusion of this article (Theorem 5.5, Theorem 5.3) is that
the singular points in X (Fq) and C(Fp) are canonically in bijection, once one
chooses the algebraically closed fields Fp and Fq to be algebraic closures of
the two residue fields Fp2 and Fq2 of O. A choice of this type appears quite
natural if one considers the related, but simpler, problem of comparing the
singular points of X (F) and X (F′) when F and F′ are two algebraic closures
of Fq. These are the isomorphism classes of supersingular elliptic curves with
Γo(M)-structures, over F and F′, respectively. For a general prime number
q, the isomorphism classes are defined only over the quadratic extensions of
Fq in F and F′, and the isomorphism classes cannot be identified until we
choose an isomorphism between the two different fields Fq2 .

We also discuss the analogous problem of expressing the set of compo-
nents of CFq

in terms of the singular points of Xo(Mq) in characteristic q.
Further, we treat the generalization of the two problems, first indicated by
Jordan and Livné, to the case where the discriminant of O is of the form
pqD, D being a product of an even number of distinct primes which are
prime to pqM . For the generalization, we use a result indicated by Deligne-
Rapoport in §7 of the Introduction to [5]. Although this result is not proved
in [5], it was obtained by Morita in his unpublished thesis [18]. It may also
be established by the techniques of [3].

As already indicated, we compare objects in characteristics p and q by
relating them both to quaternion arithmetic. We take a point of view which
is borrowed from Mestre-Oesterlé [17], involving what we call “oriented or-
ders.” As an illustration, consider the problem of classifying, up to isomor-
phism, supersingular elliptic curves over an algebraic closure F of Fq.

This problem was solved by Deuring, and the solution is usually phrased
in terms of a base point, i.e., a fixed supersingular elliptic curve Eo. The ring
Ro = End(Eo) is a maximal order in the rational quaternion algebra Ro⊗Q,
which is ramified precisely at q and ∞. To each supersingular elliptic curve,
one associates the locally free rank-1 left Ro-module Hom(E,Eo). This
association sets up a bijection between isomorphism classes of supersingular
elliptic curves and left Ro-modules of the indicated type.
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In the variant due to Mestre and Oesterlé, one dispenses with Eo and
associates to each E its endomorphism ring R, plus the map φ:R→ F which
gives the action of R on the 1-dimensional F-vector space Lie(E/F). The
map φ takes values, necessarily, in the quadratic subfield Fq2 of F. The
pair (R,φ) is an “oriented maximal order” in a rational quaternion algebra
of discriminant q. Deuring’s theorem may be rephrased as the assertion
that the construction E 7→ (R,φ) induces a bijection between isomorphism
classes of supersingular elliptic curves over F and oriented maximal orders
of discriminant q.

In a mild generalization, one can classify supersingular elliptic curves
with Γo(Mp)-structures; the result involves “oriented Eichler orders of level
Mp” in a quaternion algebra of discriminant q. Here, by the result of Deligne
and Rapoport [5], the objects being classified are naturally the singular
points of XF.

To complete the picture, we must relate the singular points of CFp
to

oriented orders. As shown by the method of Drinfeld [6] (cf. [31], Satz 3.10),
these points are represented by those O-abelian surfaces A (furnished with
Γo(M)-structures) which satisfy the following property: Let σ be one of the
two homomorphisms O →→ Fp. Then there is an O-stable subgroup H of A,
isomorphic to αp, such that the homomorphism

O → End(H) = k

giving the action of O on H coincides with σ.
In §4, we treat the problem of classifying such “mixed exceptional” ob-

jects, and show especially that they are classified by their endomorphism
rings (viewed as oriented orders). The endomorphism rings are Eichler or-
ders of level Mp in a rational quaternion algebra of discriminant q, just as
above. We recover a result which is implicit in the existing literature in a
base-point dependent form (cf. [31], §4).

The proof we have given for this classification theorem is direct, and
perhaps unnecessarily long. In essence, we remark that A is isomorphic to
the product E×E, where E is a supersingular elliptic curve over Fp, which
we can take to be fixed. If R is the endomorphism ring of E, to give an
action of O on A is then to give an (O, R)-bimodule which is Z-free of rank
8. Such bimodules are presumably difficult to classify in general, since the
tensor product O⊗R is not a hereditary ring. (Recall that a ring is said to
be left-hereditary if all left ideals of the ring are projective modules.) Fortu-
nately, the condition satisfied by A implies that the corresponding bimodule
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is “admissible” (in the sense of §2). We show in §2 that admissible rank-
8 bimodules are classified by the endomorphism rings, viewed as oriented
orders.

The author wishes to thank Professors C.J. Bushnell, N.M. Katz, R. Liv-
né, B. Mazur, J. Oesterlé, and F. Oort for helpful conversations and corre-
spondence. He also thanks the Max Planck Institute in Bonn, the IHES,
and the Université de Paris XI for invitations during the preparation of this
article.
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1 Local Study of Certain Bimodules

Let p be a prime. Let O be a maximal order in a quaternion division algebra
B over Qp. Let ℘ be the maximal ideal of O and let Fp2 be the residue field
of ℘. Let π be a uniformizer of ℘. We can, and do, assume that π2 = p.
(For background on the arithmetic of quaternion algebras over local fields,
see for example [30], Ch. II.)

A classification theorem

Recall that B ⊗Qp B is a matrix algebra (of degree 4) over Qp. Indeed, let
′ denote the involution of B for which

x 7→ xx′

is the reduced norm in B. The map ′ thus induces an isomorphism between
B and its opposite algebra. Define

µ:B ⊗Qp B → EndQp(B)

by sending x ⊗ y to the composition of left multiplication by x and right
multiplication by y′. The map µ is easily seen to be an isomorphism.

Let
C = O ⊗Zp O

and identify C with its image under µ. The ring C is visibly contained in the
hereditary order

A =
{
ϕ ∈ EndZp(O) | ϕ(℘) ⊆ ℘

}
,

since ℘ is a 2-sided ideal of O. (For background on hereditary orders, see
[25] and [2], §1.2.)

It is to be noted, in fact, that C is strictly contained in A. Indeed, C
lies in the sub-order of A consisting of those ϕ ∈ A which induce Fp2-linear
endomorphisms (i.e., homotheties) on the quotients O/℘ = Fp2 and ℘/℘2.

Let θ be the element π−1 ⊗ π of B ⊗Qp B. Viewed as an element of
EndQp(B), θ lies in A, since it preserves both O and ℘. Note that θ is an
involution, since π2 = p lies in the center of B.

Proposition 1.1 The ring A is generated by C, together with the involution
θ.
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Proof . Let W be the ring of Witt vectors over Fp2 , i.e., the ring of integers
of the unramified quadratic extension K of Qp. Let σ be the Frobenius
automorphism of W : the non-trivial automorphism of K over Qp. We may
view O explicitly as W ⊕Wπ, where the multiplication in O is such that
we have

aπ = π(σa)

for a ∈W . Once O is written this way, we have in particular an embedding
W ↪→ O. We use this embedding to view O as a left W -module; it is a free
W -module of rank 2. Define A+ to be the ring of W -linear endomorphisms
of O which preserve ℘. Thus we have

A+ = A ∩ EndW (O) = EndW (℘) ∩ EndW (O),

where the second intersection takes place in K ⊗Qp B. The ring A+ is thus
an Eichler order in K ⊗Qp B of level p. Now the map µ clearly induces an
embedding

λ:W ⊗Zp O ↪→ A+.

This embedding is, in fact, an isomorphism, as we verify by noting that both
W ⊗Zp O and A+ are orders in K ⊗Qp B with reduced discriminant p.

Let B be the ring generated by θ and by C. We have B ⊆ A, and the
Proposition asserts the equality of the two rings. As we have just seen, we
have

A+ ⊂ B.

We then have also
A− ⊂ B,

where A− = θA+. It is clear that A− may be described alternately as the
ring of σ-linear endomorphisms of O which preserve ℘. Indeed, the elements
of A− are certainly σ-linear, since θ is σ-linear and the elements of A+ are
linear. On the other hand, if a is a σ-linear endomorphism of O which
preserves ℘, then

a = θ2(a) = θ (θ(a)) ,

and θ(a) ∈ A+.
To prove the equality B = A, it suffices now to show that A = A+ +A−,

i.e., to verify that an arbitrary element of A is the sum of (W -) linear and
σ-linear elements of A. For this, we consider the action of W ⊗Zp W on A
for which x⊗ y sends a to the endomorphism

(left multiplication by x) ◦ a ◦ (left multiplication by y).
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of O. We have available the isomorphism

W ⊗Zp W ≈W ⊕W

mapping x ⊗ y to (xy, xσ(y)). Via this isomorphism, we consider A as a
left W ⊕W -module. The action of W ⊕W on A then breaks up A into
the direct sum of two W -submodules. On the first submodule, x⊗ y acts as
xy for all x, y ∈ W . In particular, the actions of x ⊗ 1 and 1 ⊗ x coincide;
therefore, the elements of the first submodule are W -linear. Similarly, the
elements of the second factor are σ-linear. Since every element of A is the
sum of elements in the two submodules, we have completed the necessary
verification.

An alternate proof . The author is grateful to C.J. Bushnell for communi-
cating a second proof of Proposition 1.1. Here is a summary of his method:

Let B again be the order generated by θ and by C. We have B ⊆ A. It
is easy to check the equality

(B : C) = p4. (1)

Indeed, we may choose a Zp-basis {x, y, z, t} of O for which {x, y, pz, pt} is a
basis of ℘. The ring C is then realized as the free Zp-module with the 16 basis
vectors α ⊗ β, where α and β run through our chosen basis. Recognizing
that B is the Zp-module O⊗O+℘⊗℘−1, we see that B may be obtained as
the Zp-module C+ p−1L, where L is the free Zp-module of rank 4 generated
by x⊗ x, x⊗ y, y ⊗ x, and y ⊗ y. This leads to (1).

We now use the standard trace form τ : u⊗ v 7→ tr(u) · tr(v) on B ⊗B,
where “tr” denotes the reduced trace on B. For Λ a lattice in B⊗B, we let
Λ̂ be its Zp-dual:

Λ̂ = {β ∈ B ⊗B | τ(βΛ) ⊆ Zp }.

It is well known that
(Ĉ : C) = p16. (2)

Comparing this with (1), we see that we have (B̂ : B) = p8. On the other
hand, it is known that (Â : A) = p8, cf. [1], Prop. 1.11. Since B ⊆ A, the
two orders A and B must be equal.

We deduce from Proposition 1.1 a structure theorem involving free finite-
rank Zp-modules L which are furnished with left and right O-actions, i.e.,
which are given as (O,O)-bimodules.
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Theorem 1.2 Let L be an (O,O)-bimodule which is free of finite rank over
Zp. Assume that L satisfies the equality

℘L = L℘. (3)

Then L is isomorphic to a finite direct sum of copies of O and ℘, regarded
as bimodules via the natural left- and right-multiplications of O on itself and
on ℘.

Remark. The equality (3) is not satisfied automatically. It is an amusing
exercise to construct examples of (O,O)-bimodules which are Zp-free of rank
8 for which (3) fails.

Proof . To give a bimodule structure on L is to give a left action of the ring
O ⊗Zp O, since O is its own opposite ring. Equivalently, an (O,O)-bimodule
is a left C-module. Assume that L is such a module, free of finite rank over
Zp. Then L satisfies (3) if and only if the operator θ (which acts a priori on
L⊗Zp Qp ) preserves L. Hence the bimodules L under considerations are
A-modules, in view of Proposition 1.1.

In view of the standard theory of representations of hereditary orders
[2, 25], all A-modules which are free of finite rank over Zp are direct sums
of copies of the A-modules O and ℘. This proves Theorem 1.2.

Variants

We consider two variants of Theorem 1.2.

Theorem 1.3 Let L and L′ be bimodules as in Theorem 1.2. Then L and
L′ are isomorphic if and only if the (Fp2 ,Fp2)-bimodules L/℘L and L′/℘L′

are isomorphic.

(In the statement of this “Nakayama Lemma,” both actions of O on L/℘L
factor through Fp2 because of equation (3). Hence L/℘L is naturally an
(Fp2 ,Fp2)-bimodule. Similarly for L′/℘L′.)

To deduce Theorem 1.3 from Theorem 1.2, we first remark that an
(Fp2 ,Fp2)-bimodule is nothing but a left module for the ring Fp2 ⊗Fp Fp2 .
This latter ring is isomorphic to the direct sum Fp2 ⊕ Fp2 under the map

x⊗ y 7→ (xy, xȳ),
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where ȳ is the image of y under the non-trivial automorphism of Fp2 over
Fp. Further, to give an Fp2⊕Fp2-module is to give a direct sum M1⊕M2 of
Fp2-vector spaces. Hence a finite (Fp2 ,Fp2)-bimodule M is determined up
to isomorphism by a pair of positive integers r and s: the dimensions of M1

and M2. (We can say that M is of type (r, s).)
One checks immediately that L/℘L is of type (r, s) when

L =

r factors︷ ︸︸ ︷
O × · · · × O ×

s factors︷ ︸︸ ︷
℘× · · · × ℘ .

Now if L and L′ are given as in Theorem 1.3, then by Theorem 1.2 we have

L ≈ Or × ℘s, L′ ≈ Or′ × ℘s′

for suitable integers r, s, r′, s′. If L/℘L and L′/℘L′ are isomorphic, then

(r, s) = (r′, s′),

so that L and L′ are isomorphic.
To deduce Theorem 1.2 from Theorem 1.3, we start with L, define (r, s)

to be the type of L/℘L, and observe that L and Or × ℘s have isomorphic
reductions. By Theorem 1.3, we deduce that L and Or×℘s are isomorphic.

Theorem 1.4 Let n be a positive integer. Let f :O → M(n,O) be a homo-
morphism of rings satisfying

f(℘) ⊂ M(n, ℘), (4)

where M(n, ℘) is the set of matrices in M(n,O) whose entries lie in ℘. Then
f is GL(n,O)-conjugate to a homomorphism of the form

x 7→ diag (a1(x), . . . , an(x)) , (5)

where each ai is either the identity map or else the map

x 7→ π−1xπ. (6)

Proof . Let L = On. Define a right O-action on L by componentwise
right-multiplication, and define a left O-action on L via the homomorphism
f : x ∈ O acts on the column vector (u1 . . . un) ∈ L by multiplication by
the matrix f(x). It is easy to see that the bimodule so defined satisfies
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the condition (3). Indeed, condition (4) implies that we have an inclusion
℘L ⊆ L℘, and this leads to the equality (3) because ℘L and L℘ have the
same index in L, namely p2n.

By Theorem 1.2, we have an isomorphism of bimodules

ϕ:L ∼→
r factors︷ ︸︸ ︷

O × · · · × O ×
s factors︷ ︸︸ ︷

℘× · · · × ℘ .

for suitable r and s. In this isomorphism, we may replace each factor ℘ by a
factor O, provided that we twist the left action of O on O. Namely, the map
t 7→ π−1t induces an isomorphism of right O-modules ℘ ∼→ O. This map
becomes an isomorphism of bimodules if we re-define the left action of O on
O so that x sends t ∈ O to (π−1xπ)t. Combining the two isomorphisms, we
get an isomorphism

On ≈ On,

where O acts on the right in the usual way on both copies of On and x ∈ O
acts on the left as follows: By matrix multiplication by f(x) on the first
factor, and by matrix multiplication by the diagonal matrix

diag(

r factors︷ ︸︸ ︷
x, . . . , x ;

s factors︷ ︸︸ ︷
π−1xπ, . . . , π−1xπ)

on the second factor. This isomorphism being O-linear, it is given by left
multiplication by a matrix in GL(n,O).

Remark . Since every bimodule L as in Theorem 1.2 is isomorphic as a
right-module to On for some n, every such bimodule is given by a map f as
in the statement of the theorem. Hence Theorem 1.4 is in fact equivalent to
Theorem 1.2.

Corollary 1.5 Let f be a homomorphism O → M(n,O) as in Theo-
rem 1.4. Suppose that there are r occurrences of the identity map and s
occurrences of the map

x 7→ π−1xπ

in the diagonal representation of f which is given by Theorem 1.4. Then
the commutant of f(O) in M(n,O) is a hereditary ring isomorphic to the
intersection

End(Zn
p ) ∩ End(Zr

p ⊕ pZs
p) (7)

in M(n,Zp).
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Proof . We may assume that f is given as in (5), with the first r ai equal
to the identity map and the next s ai equal to the map (6). For Z = (zij) a
matrix in M(n,O), it is easy to determine the condition on the zij imposed
by the equation f(x)Z = Zf(x) for all x ∈ O. Namely, the zij must lie in
πZp for all i and j such that ai 6= aj and in Zp for all i and j such that
ai = aj . The commutant of O in M(n,O) is thus the subring R of M(n,O)
consisting of matrices of this form.

Let δ now be the diagonal matrix diag(π, . . . , π; 1, . . . , 1) where there are
r entries π and s entries 1. The ring R is isomorphic to δRδ−1, which one
recognizes as the subring (7) of M(n,Zp). This intersection is explicitly the
subring of M(n,Zp) consisting of matrices (cij) for which cij is divisible by
p whenever j ≤ r and i > r. (For example, suppose n = 2. Then (7) is all
of M(2,Zp) whenever r = 2, s = 0 or s = 2, r = 0. It is the standard Eichler
order of level p in M(2,Zp) when r = 1 = s.)

To restate Theorem 1.3 in the context of matrices, we define for each f
as in Theorem 1.4 the map

f̄ :Fp2 → M(n,Fp2) (8)

which is induced by f (thanks to (4)).

Theorem 1.6 Let f and f ′ be homomorphism f :O → M(n,O) satisfying
(4). Assume that f̄ and f̄ ′ are GL(n,Fp2)-conjugate. Then f and f ′ are
GL(n,O)-conjugate.

Proof . We may assume that f and f ′ are given by diagonal maps

x 7→ diag (a1, . . . , an) , x 7→ diag
(
a′1, . . . , a

′
n

)
of the type described. Then f̄ and f̄ ′ are given a fortiori by diagonal maps
Fp2 → M(n,Fp2) whose components are either the identity map or the
Frobenius automorphism Fp2 → Fp2 . (The latter is induced by the map
x 7→ π−1xπ (mod ℘).) It is clear that f̄ and f̄ ′ are conjugate if and only
if the number of occurrences of the identity map Fp2 → Fp2 is the same
for f̄ and f̄ ′. This is the case if and only if the number of i for which ai is
the identity map is the same as the number of i for which a′i is the identity
map. When this condition is satisfied, f and f ′ are conjugate, in fact, by a
permutation matrix in GL(n,Z).
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2 Global Study of Certain Bimodules

Oriented Orders

Let D be a square free positive integer. For each prime p dividing D, we
suppose given a field Fp2 of cardinality p2. Let N be a positive integer which
is prime to D. Suppose that R is an Eichler order of level N in a quaternion
algebra over Q of discriminant D. Recall that, for each prime ` dividing
N , the tensor product R⊗ Z` is the intersection of two maximal orders S1

and S2 in R ⊗ Q`. These orders are distinct, and they are unique up to
permutation. (See, for example, [30], Lemme 2.4, page 39.) We shall refer
to them as the characteristic orders of R at `.

An orientation of R at `|N is a choice of one of the two characteristic
orders of R at `. This choice may be given, simultaneously for all `|N ,
by an inclusion R ↪→ R′, where R′ is a maximal order of R ⊗ Q which
is a characteristic order for R locally at each `|N . (We say that R′ is a
characteristic order of R. There are 2t such orders, where t is the number of
prime divisors of N .) An orientation of R at p|D, relative to the field Fp2 ,
is a homormorphism R→ Fp2 . To give such a homomorphism is to give one
of the two isomorphisms between Fp2 and the residue field of R at p.

An orientation of R is an orientation of R locally at each prime dividing
ND. We refer to R as an oriented Eichler order . It is clear what is meant
by an isomorphism of oriented Eichler orders.

Local Isomorphism Classes

In this §, we suppose given maximal orders O and S in two quaternion
algebras over Q. The discriminants of the rings O and S are thus the
discriminants of the quaternion algebras O⊗Q and S⊗Q, respectively. We
assume given a field Fp2 for each prime p which divides the discriminant of
either O or S. Further, we suppose that the two orders O and S have been
oriented with respect to these fields Fp2 .

For use below, we define:

• Σ to be the (possibly empty) set of prime numbers which ramify in
each of O and S;

• ∆ to be the set of primes numbers which ramify in one of O, S, but
not the other;

• D to be the product of the prime numbers in ∆.

12



We shall assume for convenience that D is different from 1, i.e., that ∆ is
non-empty.

We consider (O,S)-bimodules which satisfy a condition which globalizes
(3). Namely, we introduce for each p ∈ Σ the maximal ideals ℘O and ℘S of O
and S whose residue fields have cardinality p2. We call an (O,S)-bimodule
M admissible if it is free of finite rank over Z and satisfies the condition

℘OM = M℘S for all p ∈ Σ. (9)

Our aim is to classify admissible modules of fixed rank.
Our assumption D > 1 easily implies that the Z-rank of M is always

divisible by 8. Indeed, let A be a quaternion algebra which represents the
sum of O⊗Q and S ⊗Q in the Brauer group Br(Q) of Q. Because D > 1,
A is a division algebra. If M is an (O,S)-bimodule, there is an induced
action on M ⊗Q of the tensor product

(O ⊗Q)⊗ (S ⊗Q) ≈ M(2,A).

The action of M(2,A) on M ⊗Q breaks up M ⊗Q into the direct sum of
two isomorphic A-vector spaces, each of which has Q-dimension divisible by
4.

In our application, O will be a maximal order in an indefinite quaternion
algebra over Q, while S will be a maximal order in a definite quaternion
algebra over Q. Thus the two quaternion algebras will not be isomorphic,
and our assumption D 6= 1 is automatically satisfied. In any case, our main
applications concern the situation where the Z-rank of M is equal to 8.

If M is admissible and ` is a prime, we let M` be the tensor product
M ⊗ Z` and similarly define O` and S`. Then M` is a (O`,S`)-bimodule.
In particular, when ` = p is an element of Σ, we may consider Mp as an
(Op,Op)-bimodule after choosing an isomorphism Op ≈ Sp. This bimodule
of course satisfies the condition (3). Consequently, the isomorphism class of
Mp may be read off from that of

Mp = M/(M℘S) = M/(℘OM)

in view of Theorem 1.3. The endomorphism ring ofMp is similarly calculated
by Corollary 1 to Theorem 1.4. In particular, this endomorphism ring is
isomorphic to a hereditary order in M(2n,Zp), where n = rankZ(M)/8.

On the other hand, when ` 6∈ Σ, it is easy to see that the isomorphism
class of M` depends only on the rank of M over Z. Indeed, suppose to fix
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ideas that ` is unramified in S, so that S` is isomorphic to the matrix algebra
M(2,Z`). The bimodule M` may be viewed as a left module over

O` ⊗ S` ≈ M(2,O`).

Thus, to give M` is to give a module over O` whose rank is half that of M`,
i.e., 4n. On the other hand, it is standard that all O`-modules which are free
of finite rank over Z` are free over O`. (See, for example Theorem 18.7 of
[25].) We find that End(M`) is isomorphic to M(n,O`). In the typical case
where ` is unramified in O (as well as in S), End(M`) is thus isomorphic to
M(2n,Z`).

The following results now follow directly.

Proposition 2.1 Suppose that M is an admissible (O,S)-bimodule of rank
8n. Then the Q-algebra End(M) ⊗ Q is isomorphic to the matrix algebra
M(n,A), where A is a quaternion algebra over Q whose class in the Brauer
group Br(Q) is the sum of the classes of the quaternion algebras O⊗Q and
S ⊗ Q. In particular, A is a matrix algebra locally at each prime p in Σ.
The ring End(M) is a hereditary order in End(M) ⊗Q which is maximal
locally at all primes ` 6∈ Σ.

Proposition 2.2 Let M and N be admissible bimodules of equal rank 8n.
Then M` and N` are isomorphic (O`,S`)-bimodules for all ` 6∈ Σ. For
p ∈ Σ, Mp and Np are isomorphic if and only if Mp and Np are isomorphic
(O/℘O,S/℘S)-bimodules.

In connection with the latter proposition, it should be stressed that the
isomorphism classes of Mp and Np are each determined by a pair of integers
(r, s) summing to 2n. Indeed, as in the discussion of Theorem 1.3, to give
an (O/℘O,S/℘S)-bimodule is to give a vector space over each of two fields
isomorphic to Fp2 .

Isomorphism classes and right modules

Let M be an admissible bimodule, and pose Λ = End(M). For each ad-
missible bimodule N which is locally isomorphic to M (in the sense that it
becomes isomorphic to M after tensoring with Z` for all primes `), let

J(N) = Hom(M,N)
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be the set of bimodule homomorphisms M → N . This abelian group is a
right Λ-module under composition. It is visibly locally free of rank 1 in the
sense that we have an isomorphism

J(N)⊗Z Z` ≈ Λ⊗Z Z`

for each prime `. Indeed, if φ` ∈ Hom(M`, N`) is an isomorphism M` ≈ N`,
then φ` is a basis for J(N)⊗Z Z` over Λ⊗Z Z`.

Theorem 2.3 The association N 7→ J(N) establishes a bijection between
the sets of isomorphism classes of the following objects:

• (O,S)-bimodules which are locally isomorphic to M ;

• Locally free rank-1 right Λ-modules.

Proof . For J locally free of rank 1 over Λ, consider

N(J) = J ⊗Λ M.

This tensor product has a natural bimodule structure coming from the ac-
tions of O and S on the second factor. Locally at each prime `, we have by
hypothesis an isomorphism J ∼ Λ; this establishes an isomorphism (locally)
N(J) ∼M , which tells us that N(J) is locally isomorphic to M .

To check that N(J(N)) is isomorphic to N , we note that the contraction
map

Hom(M,N)⊗Λ M → N ; φ⊗m 7→ φ(m)

is an isomorphism — this is clear locally. Similarly, we have

J
∼→ Hom(M,J ⊗Λ M); j:m 7→ j ⊗m.

Hence the two constructions are inverses of each other.

Eliminating base points

We now complement Theorem 2.3 with a statement which describes the set
of isomorphism classes of admissible bimodules of Z-rank 8 in an intrinsic
fashion, i.e., without demanding that a base point M be fixed as in Theo-
rem 2.3. We first consider local equivalence: two bimodules M and N are
locally isomorphic or locally equivalent if M` ≈ N` for all primes `. Assum-
ing that M and N both have rank 8, their localizations M` and N` are a

15



priori isomorphic for all ` 6∈ Σ. Hence the local equivalence is the statement
that we have Mp ≈ Np for each p ∈ Σ.

As discussed above, the isomorphism class of Mp is determined by that
of the (O/℘O,S/℘S)-bimodule

Mp = M/(M℘S) = M/(℘OM),

which has rank 4 over Fp. Every finite (O/℘O,S/℘S)-bimodule is a direct
sum of a certain number of copies of Fp2 , on which O/℘O and S/℘S act
in the obvious way by multiplication, and a “twisted” Fp2 , on which O/℘O
acts in the obvious way by multiplication and S/℘S acts by conjugate mul-
tiplication. In particular, Mp is a sum of, say, rp copies of Fp2 and (2− rp)
copies of the twisted Fp2 . We may restrict consideration to bimodules in
a fixed local equivalence class by requiring, for each p ∈ Σ, that rp take a
fixed value between 0 and 2.

We suppose, then, in the following discussion that numbers rp have been
fixed and that M is an admissible bimodule of Z-rank 8 for which the mod-
ules Mp have “invariants” rp. Let Λ be the ring of endomorphisms of the
bimodule M . We shall show that the isomorphism class of M is character-
ized by the isomorphism class of Λ as an oriented Eichler order.

As a special case of Proposition 2.1, the endomorphism algebra Λ ⊗Q
is (up to isomorphism) that quaternion algebra A over Q which is ramified
precisely at the primes in ∆. The ring Λ = End(M) is an order in Λ ⊗Q
which is maximal locally at all primes ` 6∈ Σ. At a prime p ∈ Σ, Λ is a
maximal order if rp = 0 or 2 and is an Eichler order of level p if rp = 1. (See
Corollary 1 to Theorem 1.4 and the example given at the end of its proof.)
We may summarize this information by saying that Λ is isomorphic to an
Eichler order of level N in A, where N is the product of those primes p ∈ Σ
for which rp = 1.

Let p now be a prime in ∆. Then, in particular, Λ is maximal at p. There
is a canonical isomorphism between the residue field of Λ at p and the field
Fp2 . To see this, consider the case where p is ramified in O, but not in S.
Let ℘ be the prime of O whose residue field is Fp2 . The quotient M/℘M
is then an (Fp2 ,S)-bimodule, i.e., a left module over Fp2 ⊗ S ≈ M(2,Fp2).
Moreover, this quotient has rank 2 as an Fp2-vector space, since M has rank
8 over Z. Therefore, the action of M(2,Fp2) on M identifies M(2,Fp2) with a
subalgebra of the algebra of Fp-endomorphisms of M/℘M . The commutant
of this subalgebra is Fp2 ; i.e., the algebra of bimodule endomorphisms of
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M/℘M is precisely Fp2 . Since Λ is the ring of bimodule endomorphisms of
M , there is a natural map

ρp: Λ → Fp2 .

This map establishes the desired isomorphism. The set of maps

{ ρp ; p ∈ ∆ }

is the first part of our orientation of Λ.
The second part concerns the set Σo consisting of those primes p ∈ Σ

for which rp = 1. If p is such a prime, M contains a canonical submodule
of index p2 for each of the two possible isomorphisms O/℘O ≈ S/℘S . To
see this, we remark again that the quotient Mp of M is intrinsically the
direct sum of two 1-dimensional Fp2-vector spaces corresponding to the two
isomorphisms. The kernels of the maps from M to each of these two sub-
modules are the submodules of M in question. It is easy to see from the
description in Corollary 1 to Theorem 1.4 that the endomorphism ring Λ of
M is the intersection in End(M ⊗ Q) of the endomorphism rings of these
two submodules. These endomorphism rings are each Eichler orders of level
N/p in End(M ⊗Q); they are, locally at p, the two maximal orders whose
intersection is Λ. To choose one of these maximal orders is to orient Λ at
p. Our order Λ is indeed oriented at each p ∈ Σo because the chosen ori-
entations furnish, in particular, isomorphisms O/℘O ≈ S/℘S for each such
p. Since orders in a quaternion algebra may be specified locally, the local
orientations of Λ determine a maximal order Λ∼ of Λ⊗Q which contains Λ.

To summarize, we fixed a collection of integers

{ rp ; p ∈ Σ }

where the rp satisfy 0 ≤ rp ≤ 2. We considered admissible bimodules M ,
free of rank 8, for which the various reductions Mp of M have “invariants”
rp. Each M gives rise to its endomorphism ring Λ, which is an Eichler order
of level N in a quaternion algebra of discriminant D. Here N is the product
of the primes in Σo: those primes in Σ for which rp = 1. The Eichler order
Λ is oriented at each prime p ∈ ∆ by the map ρp. It is oriented at each
prime p ∈ Σo by the maximal order Λ∼ ⊇ Λ. It is thus an oriented Eichler
order of level N in a quaternion algebra over Q of discriminant D.

Theorem 2.4 The map M 7→ Λ (with its orientation) induces a bijection
between the set of isomorphism classes of admissible the rank-8 bimodules
M with invariants rp and the set of isomorphism classes of oriented Eichler
orders of level N in quaternion algebras of discriminant D.
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Proof . First, let M and M ′ be bimodules of the type under consideration,
and assume that they have isomorphic oriented Eichler orders Λ and Λ′. We
must show that M and M ′ are isomorphic. Let J again be Hom(M,M ′),
first considered as a right Λ-module. It will enough to show that J is trivial,
i.e., free of rank 1 over Λ (Theorem 2.3).

For this, we choose and fix an isomorphism of oriented Eichler orders
Λ ≈ Λ′. Via this isomorphism, J (which is a priori a (Λ′,Λ)-bimodule)
becomes a (Λ,Λ)-bimodule. It is clear that this bimodule is invertible ([25],
page 319) with inverse Hom(M ′,M). (Recall that M and M ′ are isomorphic
locally.) It is a fortiori sufficient to show that this bimodule is isomorphic
to the trivial invertible bimodule Λ. Equivalently, we must show that its
class in the Picard group of Λ ([25], page 320) is trivial. Since the center of
Λ is trivial, the Picard group of Λ coincides with the group Picent Λ (loc.
cit.). The exact sequence (37.29) in Theorem (37.28) of [25] therefore shows
that it is sufficient to check that Jp is trivial in Picent Λp for every prime
number p.

It is known that the group Picent(Λp) is trivial for all p prime to N ·D
and cyclic of order 2 for all p dividing N ·D (see [25], Theorem (37.27) and
Exercise (39.6)). We need consider, then, only the situation for p|D and for
p|N .

First suppose that p divides D. Then Jp is, first, a free right Λp-module
of rank 1, and we have naturally

Λ′
p = EndΛp(Jp).

Each basis element for the right Λp-module Jp thus defines an isomorphism
Λ′

p ≈ Λp; changing the basis changes the isomorphism by an inner auto-
morphism of Λp. In particular, there is a canonically defined isomorphism
between the residue fields of Λp and Λ′

p, since these residue fields are com-
mutative. This canonical isomorphism is, in another optic, the isomorphism
resulting from the orientations of Λ and Λ′ at p. Since our chosen isomor-
phism Λ′ ≈ Λ is compatible with orientations, it induces the canonical iso-
morphism on the level of residue fields. It is easy to see from this that there
is a basis element v of Jp for which the associated isomorphism Λ′

p ≈ Λp

is the base extension to Zp of the chosen isomorphism. This basis element
defines the isomorphism λ 7→ vλ of Λp onto Jp. A tautological computation
now shows that this is an isomorphism of Λp-bimodules. Hence Jp is trivial
in Picent Λp.

A similar computation treats the primes p dividing N . Here, again, each
basis element of the right Λp module Jp defines an isomorphism Λ′

p ≈ Λp.
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The point is that an isomorphism Λ′
p ≈ Λp is obtained from some basis

element if and only if it is compatible with the orientations of Λp and Λ′
p.

Explicitly, Λp comes equipped with a maximal order Λp
∼ containing Λp,

and similarly for Λ′
p. An isomorphism Λ′

p ≈ Λp is compatible with the
orientations if it carries Λ′

p
∼ to its analogue Λp

∼. In particular, our chosen
isomorphism Λ′ ≈ Λ leads by base extension to an isomorphism Λ′

p ≈ Λp

which comes from a basis vector. Making explicit what this means, we again
find that Jp is trivial in Picent Λp.

We thus have shown that our association (bimodule) 7→ (oriented order)
is injective, and we want to show that it is surjective. For this, we begin by
verifying that there is at least one bimodule M of the type under considera-
tion. (This does not seem to be obvious!) It is enough to carry out this step
in the special case where all rp = 1: the module M constructed in that case
will have canonical submodules which exhibit all possible collections (rp).
(These canonical submodules are defined as in the discussion showing that
Λ is oriented at p when p is in Σo.)

Furthermore, it is enough to construct M after a possible replacement
of O and/or S by another maximal order having the same discriminant.
Indeed, suppose for instance that we have constructed an (O,S ′)-module
M ′ with the desired properties, where S ′ has the same discriminant as S.
Then we can find an (S ′,S)-bimodule I which is locally free of rank 1 over
each of S and S ′. (We can first reduce to the case where S and S ′ are orders
in the same quaternion algebra. Then the I to be found is a left S ′-ideal
whose right order is S. It is classical that such ideals exist.) Once I is found,
we can set

M = M ′ ⊗S′ I.

Then M has a right S-action as well as the left O-action inherited from M ;
it is not hard to show that M is admissible and has invariants rp = 1 if M ′

has these properties.
To carry out the construction, we choose a quadratic number field K

which is ramified at all primes p ∈ Σ and which can be embedded in both
quaternion algebras O ⊗ Q and S ⊗ Q. (It is enough that all primes p ∈
∆ ramify or stay prime in K and that K be imaginary if one of the two
quaternion algebras is definite.) Let OK be the integer ring of K. It is
known that OK can be embedded in some maximal orders in each of the
quaternion algebras O ⊗Q and S ⊗Q. (Although this fact is presumably
very elementary, one may be deduce it from the more precise Th. 5.11 of
[30].)
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For the reasons explained above, we may (and do) assume that these
orders are in fact O and S. Let us fix, then embeddings OK ↪→ O and
OK ↪→ S. Consider the tensor product

M = O ⊗OK
S,

which has an evident (O,S)-bimodule structure. It is (locally) free of rank
8 over Z, since O and S are each locally free of rank 2 over OK .

Let us check that M is admissible at each p ∈ Σ and that its invariants
rp are all 1. Choose a basis for the right OK ⊗ Zp-module O ⊗ Zp. In
terms of this basis, the left action of O ⊗ Zp on O ⊗ Zp is described by a
homomorphism

f :O ⊗ Zp ↪→ M(2, OK ⊗ Zp).

Since p is ramified in K, the maximal ideal of O ⊗ Zp is generated by a
uniformizer π of OK ⊗Zp. This shows that f(℘O ⊗Zp) consists of matrices
whose coefficients are divisible by π. Therefore M is admissible at p. Indeed,
in matrix terms the local bimodule Mp is given by the composite of f and
the map on matrix rings deduced from the inclusion of OK in S. Matrices
divisible by π map to matrices divisible by ℘S under this map.

To check that the value of rp is 1, we reduce the matrix maps “mod ℘.”
The map f becomes an embedding

O/℘O ↪→ M(2,Fp), (10)

since the residue field of K at p is the prime field Fp. After extension to
a quadratic extension of Fp, this representation of O/℘O ≈ Fp2 necessar-
ily becomes a direct sum of the two possible embeddings of Fp2 into the
quadratic extension. In particular, the map

O/℘O ↪→ M(2,S/℘S) (11)

which describes the bimoduleMp is the direct sum of each of the two possible
isomorphisms O/℘O ≈ S/℘S . This is another way of saying that rp = 1.

Knowing that bimodules M of the desired type exist, we fix one of them,
say Mo. Let Λ be the endomorphism ring of Mo. Thus Λ is an oriented
Eichler order of level N in the quaternion algebra H = Λ⊗Q of discriminant
D.

For the moment, regard Λ as an Eichler order and forget that it is en-
dowed with an orientation. It will be enough (in view of Theorem 2.3) to
show that the number of isomorphism classes of locally free rank-1 right Λ
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modules is finite and equal to the number of types of oriented Eichler orders
of level N in a quaternion algebra of discriminant D.

Let Ĥ be the ring of finite adeles of H. Similarly, let Λ̂ = Λ ⊗ Ẑ be
the product of the local completions of Λ. Then for each x = (xp) ∈ Ĥ∗, a
locally free rank-1 right Λ module is given by the intersection

Λ ∩
∏
p

(xpΛp)

in Ĥ. This construction sets up a 1-1 correspondence between the set of
locally free rank-1 right Λ-modules and the double coset space H∗\Ĥ∗/Λ̂∗,
cf. [30], page 87. This double coset space is finite (loc. cit., Th. 5.4).

On the other hand, the (unoriented) Eichler orders of level N inside H
are in 1-1 correspondence with Ĥ∗/N (Λ̂), where N (Λ̂) is the normalizer of
Λ̂ in Ĥ∗. (To (xp) we associate the order whose completions are the orders
xpΛpxp

−1.) Therefore, the isomorphism classes of Eichler orders of levelN in
a quaternion algebra of discriminant D are represented by the double coset
space H∗\Ĥ∗/N (Λ̂) (Skolem-Noether theorem). The evident surjection

π:H∗\Ĥ∗/Λ̂∗ → H∗\Ĥ∗/N (Λ̂)

corresponds to the association which attaches to each right Λ-module J its
left order.

Remembering that Λ has an orientation, we can mimic the above con-
struction and view adelically the set of isomorphism classes of oriented Eich-
ler orders. The principal difference is that the “normalizer” of the oriented
Eichler order Λp in H⊗Qp is the product Q∗

pΛ
∗
p for each prime p (whereas

for unoriented orders the normalizer is “twice as big” when p divides ND).
We thus find that the set of types of oriented Eichler orders of level N and
discriminant D is in 1-1 correspondence with the double coset space

H∗\Ĥ∗/Λ̂∗Q̂∗.

(Here Q̂ is of course the ring of finite adeles of Q.) Since Q̂∗ is the product
of Q∗ and the group Ẑ∗, and since the first of these factors is in H∗ and the
second in Λ̂∗, the latter double coset space is equal to H∗\Ĥ∗/Λ̂∗.

3 Abelian Surfaces in Characteristic q

The aim of this § is to give a quaternionic classification of certain super-
singular objects in finite characteristic. In order to avoid conflict with later
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notation, we call the characteristic q, rather than p. We classify supersin-
gular elliptic curves with Γo(M)-structures, obtaining a variant of the usual
result (due to Deuring) in which no base point is fixed a priori. More gener-
ally, we classify supersingular abelian surfaces with an action of a maximal
order R in a rational indefinite quaternion algebra which is split at q. The
case of elliptic curves corresponds to the particular choice R = M(2,Z).

Supersingular Points

Let q be a prime number. Let R be a maximal order in an indefinite quater-
nion algebra over Q whose discriminant is prime to q. (We do not exclude
the case where R is isomorphic to M(2,Z).) Let D be the product of q and
the discriminant of R; thus, D is the discriminant of some definite quaternion
algebra over Q.

Suppose given finite fields Fp2 for each prime p dividing D. We assume
that R is furnished with an orientation at each prime p dividing D/q, and
we let F be an algebraic closure of Fq2 . We consider pairs (A, ι), where A
is an abelian surface over F and ι is an embedding

R ↪→ EndF(A).

In our application, we shall study only those pairs which are supersingular
in the sense that they are isogenous to a product of two supersingular elliptic
curves over F. Note that a well known theorem in [29], §3 states that all
products of n supersingular elliptic curves over F are isomorphic, provided
that n > 1. In [29], the result is attributed to P. Deligne. The proof
depends on Eichler’s theorem to the effect that the class number of M(n,B)
is 1 whenever B is a quaternion algebra over Q and n > 1.

Let a(A) be Oort’s invariant

dimF (Hom(αq, A)) ,

where αq is the usual group scheme αp with p = q. We have a priori :

1. 1 ≤ a(A) ≤ 2.

2. The abelian variety A is isomorphic to a product of two supersingular
elliptic curves if and only if a(A) = 2.

For the first statement, see [21], §2. The second statement follows from [23],
Theorem 2 and Remark 3.
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In fact, it is clear that A is necessarily isomorphic to a product of two su-
persingular elliptic curves over F. Indeed, the F-vector space HomF(αq, A)
is naturally a module over R⊗F ≈ M(2,F). Its dimension a(A) is therefore
even. Since a(A) is a priori either 1 or 2, it follows that we have a(A) = 2,
which implies the claim.

We wish to study the set of isomorphism classes of pairs (A, ι) with A
supersingular. Before doing so, we observe that this set is independent of the
choice of R as an oriented order . Indeed, if R′ is another oriented maximal
order of discriminantD/q, we can find an isomorphism φ:R→ R′ of oriented
orders because of Eichler’s approximation theorem ([30], Th. 4.3, p. 81).
(The Eichler condition is satisfied because R⊗Q is an indefinite quaternion
algebra.) This isomorphism is unique up to inner automorphisms of R or
R′. Given a pair (A, ι′), where

ι′ : R′ ↪→ EndF(A),

we define
ι : R ↪→ EndF(A)

by the formula ι′ ◦ φ. The isomorphism class of the pair (A, ι) thus defined
does not change if we change φ by an inner automorphism of R.

To study the pairs (A, ι), we fix a supersingular elliptic curve E over F
and let S = End(E). To give (A, ι) is to give a homomorphism R→ M(2, S),
or equivalently to give an (R,S)-bimodule M which is free of rank 8 over
Z. According to a well known theorem of M. Deuring, S is a maximal
order in a quaternion algebra of discriminant q over Q. The bimodule M
is automatically admissible, as the discriminants D/q and q of R and S are
relatively prime. By Theorem 2.4, the pairs (A, ι) are thus classified by
isomorphism classes of oriented maximal orders in quaternion algebras over
Q of discriminant D.

To be more precise, we note that for each (A, ι), the ring End(A, ι) =
EndR(A) is a maximal order in the quaternion algebra End(A, ι)⊗Q, which
has discriminant D. This order is naturally oriented:

• Let r be a prime divisor of D/q. Let m be the maximal ideal of R
of residue characteristic r. Then R/m may be identified with Fr2 ,
because of the given orientation of R. The kernel A[m] is an Fr2-
vector space of dimension 1. The action of End(A, ι) on this vector
space thus defines a homomorphism

End(A, ι) → Fr2 .
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This homomorphism is an orientation of End(A, ι) at r.

• Let T be the Lie algebra of A, so that T is an F-vector space of
dimension 2. The action of R on A induces an action of R ⊗ F on
T . The ring EndR(T ) is easily seen to coincide with the ring F of
homotheties of the F-vector space T . The action of End(A, ι) on T
thus defines a homomorphism

End(A, ι) → F.

In view of the structure of the ring End(A, ι), this homomorphism
must in fact take values in the subfield Fq2 of F. Hence it defines an
orientation of End(A, ι) at the prime q.

Theorem 2.4 then gives the following result:

Theorem 3.1 Let R be an oriented maximal order in a quaternion algebra
of discriminant D/q over Q. The construction

(A, ι) 7→ End(A, ι) (with its natural orientation)

induces a bijection between the set of isomorphism classes of supersingular
abelian surfaces with R-action over F and the set of isomorphism classes of
oriented maximal orders in quaternion algebras of discriminant D over Q.

In the special case D = q, R may be taken to be the matrix ring M(2,Z).
To give a pair (A, ι) is then to give a supersingular elliptic curve over F.
Our theorem then becomes a famous result of M. Deuring, as reformulated
by Mestre and Oesterlé [17].

Γo(M)-structures

First, fix a pair (A, ι) over F for which A is supersingular. Suppose that
M ≥ 1 is an integer which is prime to D. A Γo(M)-structure on (A, ι) is
an R-stable subgroup C of A(F) which is isomorphic to (Z/MZ)2 as an
abelian group. For each Γo(M)-structure C on (A, ι), let End(A, ι, C) be
the subring of End(A, ι) consisting of R-endomorphisms λ of A for which
λ(C) ⊆ C. Visibly, this ring is an order of End(A, ι)⊗Q which lies between
M ·End(A, ι) and End(A, ι). Hence it agrees with End(A, ι) locally at each
prime ` not dividing M .

Let us examine the situation at ` when ` divides M . To fix ideas, we will
first assume that M = `ν is a power of `. Let T` be the Z`-adic Tate module
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of A; this Tate module is a free left rank-1 module over the ring R` = R⊗Z`.

Choose an isomorphism R` ≈ M(2,Z`), and let L =
(

1 0
0 0

)
T`. Then the

map

t ∈ T` 7→
((

1 0
0 0

)
t,

(
1 0
0 0

) (
0 1
1 0

)
t

)
induces an isomorphism T` ≈ L ⊕ L. To give a Γo(M)-structure C on
(A, ι) is to give an R-stable lattice T ′ ⊇ T` such that T ′/T` is isomorphic to
(Z/MZ)2. Such a lattice is necessarily of the form L′ ⊕ L′, where L′ ⊇ L is
a lattice in L ⊗Q` for which L′/L is cyclic of order M . Conversely, given
any L′ with this property, the lattice L′ ⊕ L′ is a suitable T ′.

As is well known (cf. [30], pp. 40–41), the map L′ 7→ End(L′) establishes
a 1-1 correspondence between the following sets of objects:

(i) Lattices L′ in the Q`-vector space L ⊗ Q` which contain L and such
that L′/L is cyclic;

(ii) Maximal orders S in the ring End(L)⊗Q`.

Further, the map S 7→ S ∩ End(L) is injective. Indeed, as observed by
Hijikata, if S1 and S2 are maximal orders in End(L) ⊗ Q`, they form the
unique unordered pair of maximal orders with intersection S1 ∩ S2 ([30],
Lemme 2.4, p. 39). Hence we have a 1-1 correspondence between lattices
L′ as in (i) and certain orders contained in End(L). This correspondence is
given explicitly as

L′ 7→ End(L′) ∩ End(L).

Now the intersections End(L′) ∩ End(L) are Eichler orders of End(L)⊗
Q`; they are more precisely those Eichler orders for which End(L) is one
of the two characteristic orders. (Recall that, in the terminology we have
introduced, the two characteristic orders of R1 ∩R2 are R1 and R2.) In the
correspondence between lattices L′ and Eichler orders with this property, it
is clear that the index (L′:L) coincides with the level of the Eichler order
End(L′) ∩ End(L). Therefore, we have

Lemma 3.2 The Γo(M)-structures on (A, ι) are in 1-1 correspondence with
the Eichler orders of level M = `ν in End(L) for which End(L) is a char-
acteristic order.

In order to make the correspondence more canonical, we note that the
natural operation of

End(A, ι)⊗ Z` = EndR⊗Z`
T`
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on L =
(

1 0
0 0

)
T` serves to identify End(A, ι) ⊗ Z` with End(L). A more

intrinsic statement of Lemma 3.2 is that the map

C 7→ End(A, ι, C)⊗ Z`

induces a 1-1 correspondence between the set of Γo(M)-structures on (A, ι)
and the set of Eichler orders of level M in End(A, ι)⊗ Z` for which

End(A, ι)⊗ Z`

is a characteristic order.
In the more general situation where M is no longer necessarily a power

of `, we invert only the primes dividing D. For each C, the ring

End(A, ι, C)[
1
D

]

is a Z[ 1
D ]-order in the quaternion algebra End(A, ι)⊗Q, whose discriminant

is D. We have

Proposition 3.3 The map

C 7→ End(A, ι, C)[
1
D

]

induces a 1-1 correspondence between Γo(M)-structures on (A, ι) and Z[ 1
D ]-

Eichler orders in End(A, ι) ⊗ Q, of level M , for which End(A, ι)[ 1
D ] is a

characteristic order.

We now complement Theorem 3.1 with a classification of triples (A, ι, C),
where A is supersingular and where C is a Γo(M)-structure on (A, ι). (We
no longer consider the pair (A, ι) to be fixed.) The ring of endomorphisms
of (A, ι, C) is then an Eichler order of level M in the quaternion algebra
End(A, ι) ⊗Q over Q of discriminant D. To see this, we can work locally:
the statement is true at primes not dividing M because End(A, ι, C) and
End(A, ι) coincide locally there, and it is true at primes not dividing D by
Proposition 3.3. By a similar reasoning, we observe that this order has a
natural orientation at each prime dividing its discriminant MD. Indeed,
locally at the primes dividing D, this ring coincides with End(A, ι), which
already has a natural orientation. On the other hand, at primes dividing M
the inclusion

End(A, ι, C) ↪→ End(A, ι)

becomes an orientation of End(A, ι, C), since End(A, ι) becomes a charac-
teristic order of End(A, ι, C) at those primes.
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Theorem 3.4 Let M be a positive integer prime to D. Let R be a maximal
order as in the statement of Theorem 3.1. The construction

(A, ι, C) 7→ End(A, ι, C) (with its natural orientation)

induces a bijection between the set of isomorphism classes of supersingular
abelian surfaces over F with an R-action and a Γo(M)-structure, and the set
of isomorphism classes of oriented Eichler orders of level M in a quaternion
algebra of discriminant D over Q.

Proof . We first consider the injectivity. Assume that there is an isomor-
phism of oriented orders

End(A, ι, C) ≈ End(A′, ι′, C ′)

for two triples (A, ι, C) and (A′, ι′, C ′). Since the isomorphism respects the
orientations, it carries End(A, ι) to End(A′, ι′). By Theorem 3.1, the pairs
(A, ι) and (A′, ι′) are isomorphic. Therefore, we may, and shall, assume that
they are equal .

This means that our initial isomorphism of oriented orders is induced by
an automorphism of the oriented order End(A, ι). However, all such auto-
morphisms are inner, i.e., induced by automorphisms of (A, ι). Replacing C ′

by αC ′, for α a suitable automorphism of (A, ι), we reduce to the case where
the two orders End(A, ι, C) and End(A, ι, C ′) are equal inside End(A, ι). By
Proposition 3.3, we see that the groups C and C ′ are then equal.

The surjectivity is similar. Given an oriented Eichler order A as in the
statement of the theorem, we let B ⊇ A be the oriented maximal order
which is deduced from A and its orientations at the primes dividing M .
Using Theorem 3.1, we write B in the form End(A, ι), for some pair (A, ι).
By Proposition 3.3, we see that A is necessarily equal to End(A, ι, C) for
some C, as required.

4 Abelian Surfaces in Characteristic p

The material in this § is a variation of Oort’s theme that arbitrary super-
singular abelian surfaces in characteristic p are obtained from a product of
two elliptic curves by dividing the product by subgroups isomorphic to αp.
This theme is developed in [9, 12, 21, 23] and in [22]. (See also the articles
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of Langlands [15] and [31] for generalizations to higher-dimensional Shimura
varieties.)

In this §, we again consider abelian surfaces which are furnished with
an action of a maximal order in an indefinite quaternion algebra over Q.
We suppose that we are in characteristic p and that the prime p ramifies
in the maximal order we are considering. This latter assumption creates a
situation which is quite different from that of the previous §, where it was
explicitly assumed that the characteristic (which we called q) was prime to
the discriminant of the maximal order R.

Exceptional pairs

Let p be a prime number. Let O be a maximal order in an indefinite quater-
nion division algebra over Q. We assume that p divides the discriminant of
O, which we write as the product Dp. We suppose given finite fields F`2 for
each prime number ` dividing pD, and we suppose that O has been oriented
relative to these fields. Further, we choose an algebraic closure k of Fp2 .

We consider pairs (A, ι) over k, where ι is an embedding

ι:O → End(A).

In our initial discussion, we suppose that such a pair is given and fixed.

Lemma 4.1 The abelian variety A is supersingular.

Proof . The proof is elementary ([6], §4): we consider the Qp-adic Tate
module Vp(A) of A constructed with p-power division points of A(k). Then
Vp(A) has rank at most 2 over Qp. However, it is a vector space over the
quaternion division algebra O⊗Qp. Its rank is therefore a multiple of 4 and
must accordingly be 0.

In contrast to the situation which we encountered in characteristic q,
the abelian variety A in a pair (A, ι) need not be isomorphic to a product of
two supersingular elliptic curves. To explore this phenomenon, we are led
to study the Dieudonné module of A, cf. [23].

More precisely, letM be the contravariant Dieudonné module associated
to the p-divisible group of A by Oda [20], cf. [21], §1. Thus M is a free rank-
4 module over the ring W = W (k) of Witt vectors over k. This module is
furnished with its usual operators F and V , plus an induced right-action of
the ring O. It follows that the tensor product

Op = O ⊗ Zp
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acts naturally on M on the right. In the following discussion, we recall some
standard facts about Op. A convenient reference for them is the second
chapter of [30].

The ring Op is the maximal order in a quaternion division algebra over
Qp. Let ℘ be the maximal ideal of Op. Then Op/℘ is a finite field with p2

elements, which we may identify with Fp2 , using the given orientation of O.
Consider the submodules FM and VM of M, and let (F, V )M denote

their sum. These modules contain pM = FVM, so that the quotients
M/FM, M/VM, M/(F, V )M are naturally k-vector spaces. Let a(A) be
Oort’s invariant

dimk (Hom(αp, A)) = dimk(M/(F, V )M).

We have:

1. dimk(M/FM) = dimk(M/VM) = 2,

2. 1 ≤ a(A) ≤ 2.

3. The abelian variety A is isomorphic to a product of two supersingular
elliptic curves if and only if a(A) = 2.

Indeed, the first statement is true for the Dieudonné module attached to
every abelian surface over k, cf. [21], §1. The second and third statements
are true because of the above lemma, cf. our discussion of supersingular
abelian surfaces over F.

The following definition is motivated by Drinfeld’s article [6].

Definition. A pair (A, ι) is exceptional if the action of O/pO on M/FM
factors through the quotient Fp2 of O/pO.

Proposition 4.2 Suppose that (A, ι) is exceptional. Then A is isomorphic
to a product of two supersingular elliptic curves.

Proof . The hypothesis may be restated as the inclusion M℘ ⊆ FM. Using
it twice, we obtain the chain

FVM = pM = M℘2 ⊆ FM℘ ⊆ F 2M,

from which we infer VM ⊆ FM. (The map F acts injectively on M,
since FV = V F = p on M and since M is a free W (k)-module.) This
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latter inclusion implies the equality (F, V )M = FM. Since FM has k-
codimension 2 in M, we get a(A) = 2. As mentioned above, this numerical
condition is equivalent to the desired conclusion that A is a product of
supersingular elliptic curves.

Remarks.

• In the situation of Proposition 4.2, we have in fact FM = VM = M℘:
all the inclusions above are equalities.

• It is possible to construct examples of non-exceptional pairs (A, ι)
where a(A) = 2.

Pure and mixed pairs

Let π be a generator of ℘, i.e., a uniformizing element of Op. Fixing a
splitting of the quotient map

O/pO = Op/pOp → Fp2 ,

we view Fp2 as a subring of O/pO. We have

O/pO = Fp2 ⊕ Fp2π,

and
πa = apπ (12)

for a ∈ Fp2 , cf. [30], pp. 34-35.
Consider the action of the submodule Fp2 of O/pO on the 2-dimensional

k-vector space
L = M/FM.

Letting σ and τ be the two embeddings Fp2 ↪→ k, we find a canonical
decomposition of k-vector spaces L = Lσ ⊕ Lτ , where

Lσ = { t ∈ L | at = σ(a)t for all a ∈ Fp2 },

and where a similar definition is made for Lτ . (The action of Fp2 on L
should, strictly speaking, be written on the right, but we write it on the left
since Fp2 is commutative.)

Because of our choice of k as an algebraic closure of Fp2 , we are able to
“label” σ and τ so that one embedding is the inclusion Fp2 ↪→ k and the
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other embedding is the conjugate of this one. We will in fact do this below,
but it is preferable for the moment to allow σ and τ to play symmetrical
roles.

In (the English translation of) [6], the word “special” is used to denote
situations where the two spaces Lσ and Lτ are each non-zero (i.e., each of
dimension 1). Let us instead use the term mixed to refer to such situations
and the term pure in the case where one of Lσ and Lτ is 2-dimensional and
the other is 0. For precision, we say that (A, ι) is pure of type σ if Lσ is 2-
dimensional and Lτ = 0. We say that (A, ι) is pure of type τ if the situation
is reversed.

Thus the space of (isomorphism class of) pairs (A, ι) is divided into three
“packages”:

• The mixed pairs;

• The pure pairs of type σ;

• The pure pairs of type τ .

Proposition 4.3 All pure pairs are exceptional.

Proof . Indeed, suppose that (A, ι) is pure. Then (12) shows that π maps
Lσ to Lτ and vice versa. Since one of these is 0 and the other all of M/FM,
π must be 0 on L.

Classifying subgroups of A isomorphic to αp

As will be explained below, there is a simple relation between the mixed and
pure pairs, connected with O-stable subgroups of A which are isomorphic to
the group scheme αp. Namely, suppose we consider triples (A, ι,H), where
H is an O-stable subgroup of A which is isomorphic to αp. Then there
is a simple 1-1 correspondence, reminiscent of the Atkin-Lehner involution,
which maps such triples with (A, ι) pure to such triples with (A, ι) mixed,
and vice versa. The fact that there are “many more” mixed pairs than pure
pairs is counterbalanced by the following phenomenon: If (A, ι) is pure, then
the possible subgroups H are parameterized by a projective line over k. On
the other hand, for (A, ι) pure, there are at most two possible subgroups H
(and always at least one).

For a given pair (A, ι), the subgroups H of A which are isomorphic to
αp correspond to submodules N of M satisfying
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1. (F, V )M⊆ N ⊆M,

2. dimk(M/N ) = 1.

The correspondence attaches to H the Dieudonné module of the abelian
variety A/H, viewed as a submodule of M via the map on Dieudonné mod-
ules induced by the canonical quotient map A → A/H. The key point is
simply that the Dieudonné module of αp is the 1-dimensional k-vector space
furnished with the maps F = V = 0.

The O-stable subgroups H of A which are isomorphic to αp thus cor-
respond to modules N which satisfy 1. and 2. and which are furthermore
O-stable. Note that we may view N as a codimension-1 subspace of the
k-vector space

M/(F, V )M = L/V L.

The dimension of this latter space is a(A) and thus is a priori 1 or 2. It
follows, for instance, that there is precisely one subgroupH in case a(A) = 1.
This case, which should be thought of as the generic case, corresponds to
the situation where A is not the product of two supersingular elliptic curves.

The action of O on the line M/N is in any case given by a homomor-
phism

ω:O → Endk(M/N ) = k.

The homomorphism ω is necessarily the composite of the quotient map
O → Fp2 with one of the two embeddings

σ, τ : Fp2 → k.

We say that H is of type σ or type τ according as the embedding giving ω
is σ or τ .

Proposition 4.4 Suppose that (A, ι) is mixed. If (A, ι) is exceptional, then
A has precisely two O-stable subgroups which are isomorphic to αp. If (A, ι)
is not exceptional, then A has precisely one such subgroup.

Proof . As already remarked above, there is precisely one subgroup when-
ever a(A) = 1. In this case, the statement of the Proposition is correct, in
view of Proposition 4.2.

Suppose now that a(A) = 2, so that the αp’s in A correspond to lines in
L = M/(F, V )M. There are precisely two such lines which are Fp2-stable,
namely Lσ and Lτ . On the other hand, it is easy to see that π maps Lσ
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to Lτ and vice versa, because of the commutation relation between π and
elements of Fp2 . Thus a given line Lσ or Lτ is O-stable if and only if it is
killed by π. In particular, both lines are O-stable if and only if π = 0 on L.

Suppose, finally, that a(A) = 2 and that Lσ is not O-stable. Then π
induces an isomorphism Lσ

∼→ Lτ . On the other hand,

Lσπ
2 = pLσ = 0,

so π must then kill Lτ , which is consequently O-stable. In other words, Lτ is
O-stable if Lσ is not O-stable. Hence there is always at least one subgroup
of A which is O-stable and isomorphic to αp.

Proposition 4.5 Suppose that (A, ι) is pure. Then all subgroups of A
which are isomorphic to αp are O-stable. Such subgroups are in 1-1 cor-
respondence with points of the 1-dimensional projective space P(L).

Proof . As remarked above, (A, ι) is exceptional. By Proposition 4.2, we
have a(A) = 2, which means that the subgroups H of A which are iso-
morphic to αp correspond to lines in the two-dimensional k-vector space
L = M/FM. Furthermore, all such lines are O-stable. Indeed, by hy-
pothesis O acts on L by homotheties, through the quotient Fp2 of O/pO.
An element t of this latter quotient acts by the homothety σ(t) or τ(t),
according as (A, ι) is pure of type σ or τ .

Proposition 4.6 In the situation of the preceding proposition, the projec-
tive space P(L) has a canonical structure over Fp. In other words, there
is an isomorphism P(L) ≈ P1(k) which is defined modulo the action of
PGL(2,Fp) on P1(k).

Proof . We have FM = Mπ. Indeed, both subspaces of M contain pM
and have codimension 2 in M; on the other hand, Proposition 4.2 shows
that we have Mπ ⊆ FM. This circumstance enables us to define a p-linear
automorphism of M as the composite

φ = F ◦ π−1.

It is easy to check that φ(FM) = FM, using the coincidence of FM, VM,
and Mπ. Hence φ induces a p-linear automorphism ψ of L.
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As is well known, the automorphism ψ defines an Fp-structure on the
k-vector space L: the Fp-vector space

Lo = {x ∈ L | ψx = x }

is a “model” for L over Fp in the sense that the inclusion Lo ⊆ L induces
an isomorphism

Lo ⊗Fp
k

∼→ L.

The space Lo defines a model for P(L) over Fp; the set P(L) may be viewed
as the space of k-rational points of the Fp-scheme P(Lo).

This model depends on the choice of the uniformizer π of ℘. If we make
another choice, we replace ψ by λψ for some λ ∈ F∗

p2 ⊆ k∗, where the
inclusion of F∗

p2 in k∗ is via σ or τ according as (A, ι) is pure of type σ or
τ . A calculation shows that the space Lo is replaced by L′o = µLo, where µ
satisfies µ1−p = λ. Multiplication by µ induces an isomorphism

P(Lo) ≈ P(L′o)

which is independent of the choice of µ. Thus P(Lo) is an Fp-model of P(L)
which is unique up to unique isomorphism.

Division by subgroups of A isomorphic to αp

Suppose now that H is an O-stable subgroup of (A, ι) which is isomorphic
to αp. Let B be the abelian variety A/H, and let

j:O → End(B)

be the homomorphism giving the induced action of O on the quotient A/H.
Then we have

Proposition 4.7 1. If (A, ι) is pure, then (B, j) is mixed.

2. If (A, ι) is mixed and H is of type σ, then (B, j) is pure of type τ .

3. If (A, ι) is mixed and H is of type τ , then (B, j) is pure of type σ.
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Proof . Consider the descending sequence of Dieudonné modules

M⊃ N ⊃ FM⊃ FN ⊃ pM,

where N is the submodule of M attached to H. The quotient M/pM is
a 4-dimensional k-vector space, and the successive quotients in the above
sequence are each of dimension 1. The various quotients involved all carry
an induced k-linear action of O/pO and therefore in particular an action of
the subalgebra Fp2 of O/pO. Hence they are naturally finitely generated
k ⊗Fp

Fp2-modules.
Write again L for M/FM, and set L′ = N/FN . Then we have the

equality
[M/N ] + [L′] = [FM/FN ] + [L]

in the Grothendieck group of finitely generated k ⊗Fp
Fp2-modules. The

key point is that F induces an isomorphism M/N ∼→ FM/FN which is
linear relative to Fp2 and p-linear relative to k. In particular, we have

dimk(L′σ) = dimk(Lσ) + dimk(M/N )τ − dimk(M/N )σ

= dimk(Lσ)± 1,

where the sign is +1 if H is of type τ and −1 if H is of type σ. The three
statements of the proposition now follow by general reasoning.

Beginning again with the triple (A, ι,H), we now endow the pair (B, j)
with the group I = A[Frob]/H, where A[Frob] is the kernel of the Frobenius
map A→ A(p). The subgroup I of B is visibly O-stable.

Lemma 4.8 The group I is isomorphic to αp.

Proof . From the point of view of Dieudonné modules, we must establish
the inclusion

FM⊇ (F, V )N ,

where N is as usual the submodule of M associated with H. The inclusion
FM⊇ FN is clear, as N is a submodule of M. Hence it is enough to show
that we have FM⊇ VN in the case where VN is different from FN .

The condition VN 6= FN means that a(B) = 1 and implies, in particu-
lar, that (B, j) is mixed. Hence (A, ι) is pure, so that we have FM = VM.
As the inclusion VM⊇ VN is clear, the lemma is proved.
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Let Θ now be the operator on triples (A, ι,H) which maps a given triple
(A, ι,H) to (B, j, I). Then we have the formula

Θ(Θ(A, ι,H)) = (A, ι,H)(p). (13)

Indeed, on the level of Dieudonné modules, Θ replaces a pair (M,N ) by the
pair (N , FM). A second application of Θ then leads to the pair (FM, FN ).

The map (A, ι,H) 7→ (A, ι,H)(p) induces a bijection on isomorphism
classes of triples (A, ι,H). Moreover, (A, ι) 7→ (A, ι)(p) is easily seen to map
pure pairs to pure pairs and mixed pairs to mixed pairs. (More precisely,
it maps pure pairs of type σ to pure pairs of type τ and vice versa.) We
deduce the following result.

Theorem 4.9 The restriction of Θ to the set of triples (A, ι,H) with (A, ι)
pure (resp. mixed) induces a 1-1 correspondence between the set of isomor-
phism classes of such triples and the set of isomorphism classes of triples
(A, ι,H) with (A, ι) mixed (resp. pure).

Describing all pairs in terms of exceptional pairs

We now describe the mixed (or special) pairs (A, ι) in terms of the systems
((A, ι),H) where (A, ι) is a pure pair and H is a subgroup of A which is
isomorphic to αp. (By Proposition 4.5, H is automatically O-stable.) We
regard such systems as triples (A, ι,H) and define Θ((A, ι,H)) as above. We
let θ((A, ι,H)) be the pair consisting of the first two elements of the triple
Θ((A, ι,H)). Thus θ((A, ι,H)) consists of the abelian variety A/H with its
induced O-action.

Theorem 4.10 The map θ induces a surjection from the set of isomorphism
classes of triples (A, ι,H) with (A, ι) pure to the set of isomorphism classes
of pairs (A, ι) with (A, ι) mixed. The fiber θ−1(A, ι), for (A, ι) mixed consists
of either one or two elements. The fiber consists of two elements if and only
if (A, ι) is exceptional (cf. Proposition 4.4).

Proof . By Theorem 4.9, the fiber θ−1(A, ι) is in 1-1 correspondence with
the set of isomorphism classes of triples (A, ι,H) obtained as H runs over
the set of O-stable αp’s in A. As we saw in Proposition 4.4, for (A, ι) given
(and mixed), there are either one or two possible subgroups H. To prove
our theorem, it thus suffices to check that the situation where there are
two subgroups H leads to two distinct triples (A, ι,H) (up to isomorphism).
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This is indeed the case, because it is clear from the proof of Proposition 4.4
that one of the two subgroups is of type σ and the other of type τ (in the
sense explained before the statement of Proposition 4.4).

Classifying exceptional pairs

We now give a classification of the exceptional pairs over k, i.e., those pairs
which are either pure, or else mixed exceptional. Our treatment is based on
the results of §2 concerning admissible bimodules of Z-rank 8.

Fix a supersingular elliptic curve E over k, and let S = Endk(E). Ac-
cording to a well known theorem of Deuring, S is a maximal order (i.e.,
an Eichler order of level 1) in the quaternion algebra S ⊗ Q, which is of
discriminant p. Let M(E) be the Dieudonné module of E, so that M(E)
is a free W (k)-module of rank 2. The space M(E)/FM(E) is a k-vector
space of dimension 1. The functorial action of S on this vector space is thus
described by a character

κ:S → k.

Its image is necessarily the subfield Fp2 of k of cardinality p2. Thus S is
canonically oriented.

It will be convenient in what follows to insist on our choice of k as an
algebraic closure of the residue field Fp2 of O at p. The two embeddings σ
and τ of Fp2 into k may consequently be “labeled”: we take

σ = the identity embedding Fp2 ↪→ k

and
τ = the conjugate embedding Fp2 ↪→ k.

Further, the map κ becomes a map S → Fp2 and serves to identify the
residue fields at p of the two orders O and S. (The residue field of O at p is
identified with Fp2 via the given orientation of O.)

Let ℘O and ℘S be the maximal ideals of O and S (respectively) whose
residue fields are isomorphic to Fp2 . Then we have an isomorphism

O/℘O ≈ S/℘S . (14)

Note that (14) picks out a distinguished class of isomorphisms O ⊗ Zp ≈
S ⊗ Zp: those which induce (14) on the level of residue fields.

Let f :O → M(2,S) be a homomorphism of rings. Then f defines
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• An action ι of O on the abelian variety A = E × E (whose endomor-
phism ring is M(2,S));

• An (O,S)-bimodule M , free of rank 8 over Z: M = S ⊕ S, with the
obvious componentwise right action of S and the action of O given by
left matrix multiplication

x ∈ O : (s, t) 7→ f(x) · (s, t),

in which (s, t) is regarded as a column matrix.

This construction defines bijections among the following three sets:

• Homomorphisms f :O → M(2,S) modulo the action of GL(2,S);

• Pairs (A, ι) with a(A) = 2, up to isomorphism;

• Bimodules OMS , free of rank 8 over Z, up to isomorphism.

Indeed, when a(A) = 2, the abelian variety A in the pair (A, ι) can be taken
to be E × E. The embedding ι then becomes a map f as above. Further, ι
and ι′ give isomorphic pairs if and only if ι and ι′ differ by conjugation by
an automorphism of A. Hence the first two sets may be identified.

For the third set, the key point is that if M is a right S-module, free of
rank n > 4 over Z, then M is free over S. (This well known result of Eichler
[7] is discussed in [25], §34 and in [9], §2.) If M is of rank 4 over Z, then M
is isomorphic to S⊕S. After we fix an isomorphism between these modules,
we may write EndSM = M(2,S). Thus a left O-structure on M is given by
a map f as above.

In the dictionary A ↔ f , the Dieudonné module M = M(A) is given
as the direct sum of two copies of the Dieudonné module M(E) of E. The
right-action of O on M is given by (transpose) matrix multiplication. Since

FM(E) = M(E)℘S ,

the pair (A, ι) is exceptional if and only if we have

f(℘O) ⊆ M(2, ℘S),

where M(2, ℘S) is the set of those matrices in M(2,S) whose coefficients
lie in ℘S . In the language of bimodules M , this inclusion translates to the
inclusion

℘OM ⊆M℘S . (15)
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Since M is locally free over O and over S, (15) is equivalent to the equality
℘OM = M℘S . Hence (A, ι) is exceptional if and only if M is admissible in
the sense of §2.

In the notation of §2, the set Σ is the singleton set containing the prime
p. The set ∆ contains those primes different from p which are ramified in
O. The integer D which was defined in §2 to be the product of those primes
in ∆ thus coincides with the integer D defined above. We have

D =
disc(O)

p
.

Since Σ is a singleton set, admissible modules are described up to local iso-
morphism by a single parameter rp, which can take the three possible values
0, 1, 2. In the dictionary (A, ι) ↔ M , the value rp = 1 clearly corresponds
to mixed exceptional pairs. The values rp = 2 and rp = 0 correspond to the
pure pairs of type σ and the pure pairs of type τ , respectively. Finally, in
the notation of §2, the integer N (which describes the level of the Eichler
order) takes the value p for mixed exceptional pairs and the value 1 for pure
pairs.

From this discussion and from Theorem 2.4, we get information about
the ring End((A, ι)), i.e., about the commutant of O in End(A), when (A, ι)
is exceptional:

Theorem 4.11 For (A, ι) pure, the ring End((A, ι)) is a maximal order in
a quaternion algebra of discriminant D. For (A, ι) mixed and exceptional,
the ring End((A, ι)) is an Eichler order of level p in a quaternion algebra of
discriminant D.

As a translation of Theorem 2.3, we get the following statement.

Theorem 4.12 Let (Ao, ιo) be an exceptional pair. The map

(A, ι) 7→ Hom((Ao, ιo), (A, ι))

establishes a bijection between the set of isomorphism classes of exceptional
pairs (A, ι) of the same “type” as (Ao, ιo) (i.e., mixed, pure of type σ, pure
of type τ) and isomorphism classes of locally free rank-1 right End((Ao, ιo))-
modules.

To have a theorem in the style of Theorem 2.4, we must translate into
our context the canonical orientation of the order Λ = End(A, ι). Thus, in
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all cases we must exhibit a canonical map Λ → Fq2 for each prime q dividing
D, where Fq2 is the residue field of O at q. Further, in the case where (A, ι)
is mixed (and exceptional), we must describe a canonical maximal order Λ∼

containing Λ.
For the latter point, we recall that for (A, ι) mixed exceptional, the

abelian variety A contains precisely two subgroups which are O-stable and
isomorphic to αp (Proposition 4.4). As shown by the proof of Proposi-
tion 4.4, one of these subgroups is of type σ and the other of type τ . Let
H be the O-stable αp of type σ. The operator Θ considered above sends
(A, ι,H) to a triple (B, j, I) where (B, j) is pure of type τ (Proposition 4.7).
Because H is the unique αp in A of type σ, H is stable under End((A, ι)).
Hence there is an induced map

Λ = End((A, ι)) → End(B, j).

Since End(B, j) is a maximal order by Theorem 4.11, this inclusion is an
orientation of End((A, ι)) at p.

Now let q be a prime divisor of D and let (A, ι) be an exceptional pair.
Let Q be the maximal ideal of O whose residue field is Fq2 . To orient
End((A, ι)) at q, we remark that the Tate module Tq(A) of A at q is naturally
an O⊗Zq-module. It is necessarily free of rank 1 over O⊗Zq. In particular,
the finite group Tq(A)/QTq(A) is a 1-dimensional Fq2-vector space. The
natural operation of the ring End((A, ι)) on Tq(A)/QTq(A) is thus described
by a canonical character

ρq: End((A, ι)) → Fq2 .

(One can check that this definition of ρq is consistent with the definition
given in §2 and the dictionary M ↔ A.)

From Theorem 2.4, we now get the following result.

Theorem 4.13 The constructions (A, ι) 7→ End((A, ι)) give bijections be-
tween:

• The set of isomorphism classes of pure pairs (A, ι) of type σ and the
set of isomorphism classes of oriented maximal orders in a quaternion
algebra of discriminant D;

• The set of isomorphism classes of pure pairs (A, ι) of type τ and the
set of isomorphism classes of oriented maximal orders in a quaternion
algebra of discriminant D;
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• The set of isomorphism classes of mixed exceptional pairs (A, ι) and
the set of isomorphism classes of oriented Eichler orders of level p in
a quaternion algebra of discriminant D.

Remark . Theorem 4.13 constructs in particular a canonical bijection be-
tween the sets of isomorphism classes of pure pairs of type σ and pure pairs
of type τ . This correspondence is the Frobenius map (A, ι) 7→ (A, ι)(p).

Γo(M)-structures

Let (A, ι) be given over k. Suppose that M ≥ 1 is an integer which is prime
to the discriminant pD of O. A Γo(M)-structure on (A, ι) is an O-stable
subgroup C of A(k) which is isomorphic to (Z/MZ)2 as an abelian group.
As in the situation we discussed above (in the context of characteristic q),
let End(A, ι, C) be the subring of End(A, ι) consisting of O-endomorphisms
λ of A for which λ(C) ⊆ C. We have results which parallel those in the
situation already discussed.

In particular, for each C, the ring

End(A, ι, C)[
1
pD

]

is a Z[ 1
pD ]-order in the quaternion algebra End(A, ι) ⊗Q. (Incidentally, it

is clear that this algebra is a quaternion algebra of discriminant D over Q.
This follows easily from Theorem 4.9 and Theorem 4.12.) We have

Proposition 4.14 The map

C 7→ End(A, ι, C)[
1
pD

]

induces a 1-1 correspondence between Γo(M)-structures on (A, ι) and Z[ 1
pD ]-

Eichler orders in End(A, ι) ⊗ Q, of level M , for which End(A, ι)[ 1
pD ] is a

characteristic order.

We now classify triples (A, ι, C), where (A, ι) is an exceptional pair and
where C is a Γo(M)-structure on (A, ι). There are three cases to consider,
according to the type of (A, ι) (mixed, pure of type σ, pure of type τ). To
fix ideas, we treat in detail only the case where (A, ι) is mixed exceptional.
The ring End(A, ι, C) is then an Eichler order of level Mp in the quaternion
algebra End(A, ι) ⊗Q over Q of discriminant D. To see this, we can work
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locally: the statement is true at primes not dividing M by Theorem 4.11,
and it is true at primes not dividing pD by Proposition 4.14. By a similar
reasoning, we observe that this order has a natural orientation at each prime
dividing its discriminant pMD. Indeed, locally at the primes dividing pD,
this ring coincides with End(A, ι), which already has a natural orientation.
On the other hand, at primes dividing M the inclusion

End(A, ι, C) ↪→ End(A, ι)

becomes an orientation of End(A, ι, C), since End(A, ι) becomes a charac-
teristic order of End(A, ι, C) at those primes.

Theorem 4.15 The map

(A, ι, C) 7→ End(A, ι, C) (with its natural orientation)

induces a bijection between the set of isomorphism classes of exceptional
mixed pairs with Γo(M)-structure and the set of isomorphism classes of ori-
ented Eichler orders of level pM in a quaternion algebra over Q of discrim-
inant D.

Proof . We first consider the injectivity. Assume that there is an isomor-
phism of oriented orders

End(A, ι, C) ≈ End(A′, ι′, C ′)

for two triples (A, ι, C) and (A′, ι′, C ′). Since the isomorphism respects the
orientations, it carries End(A, ι) to End(A′, ι′). By Theorem 4.13, the pairs
(A, ι) and (A′, ι′) are isomorphic. Therefore, we may, and shall, assume that
they are equal .

This means that our initial isomorphism of oriented orders is induced by
an automorphism of the oriented order End(A, ι). However, all such auto-
morphisms are inner, i.e., induced by automorphisms of (A, ι). Replacing C ′

by αC ′, for α a suitable automorphism of (A, ι), we reduce to the case where
the two orders End(A, ι, C) and End(A, ι, C ′) are equal inside End(A, ι). By
Proposition 4.14, we see that the groups C and C ′ are then equal.

The surjectivity is similar. Given an oriented Eichler order R as in the
statement of the theorem, we let S ⊇ R be the oriented order of level p
which is deduced from R and its orientations at the primes dividing M .
Using Theorem 4.13, we write S in the form End(A, ι), for some mixed
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exceptional (A, ι). By Proposition 4.14, we see that R is necessarily equal
to End(A, ι, C) for some C, as required.

We have a similar result for pure pairs:

Theorem 4.16 The construction

(A, ι, C) 7→ End(A, ι, C) (with its natural orientation)

induces bijections between:

• The set of isomorphism classes of pure pairs of type σ, with Γo(M)-
structure, and the set of isomorphism classes of oriented Eichler orders
of level M in a quaternion algebra over Q of discriminant D.

• The set of isomorphism classes of pure pairs of type τ , with Γo(M)-
structure, and the set of isomorphism classes of oriented Eichler orders
of level M in a quaternion algebra over Q of discriminant D.

We remark that Theorem 4.10 extends in a straightforward manner to
the case of pairs (A, ι) which are furnished with Γo(M)-structures. Namely,
let (A, ι, C) be an abelian surface with an O- action and a Γo(M)-structure.
Let H be an O-stable subgroup of A which is isomorphic to αp. Then the O-
abelian variety θ(A, ι,H) has a natural Γo(M)-structure, namely the image
of C in A/H. We write θ(A, ι, C,H) for the resulting triple.

Theorem 4.17 The map θ induces a surjection from the set of isomorphism
classes of systems (A, ι, C,H) with (A, ι) pure to the set of isomorphism
classes of pairs triples (A, ι, C) with (A, ι) mixed. The fiber θ−1(A, ι, C), for
(A, ι) mixed consists of either one or two elements. The fiber consists of two
elements if and only if (A, ι) is exceptional.

5 Characteristic p and characteristic q

In this §, we suppose that p and q are distinct prime numbers. We consider
as above a maximal orderO in an indefinite quaternion algebra over Q whose
discriminant is a product Dp. We assume further that this discriminant is
divisible by q, so that q|D. As in §3, we consider a maximal order R in a
quaternion algebra of discriminant D/q. This quaternion algebra may, for
example, be isomorphic to M(2,Q); in that case, we have D = q.
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As in the previous two §§, we wish to endow O and R with orientations.
For this, we can take F`2 to be the residue field of O at ` for each ` dividing
Dp and give O its canonical orientation, consisting of the residue maps
O → F`2 for each `. We assume that orientations of R have been chosen;
these are maps R→ F`2 for each prime ` dividing D/q. (In the case D = q,
there are no choices to be made.)

We again choose k and F to be algebraic closures of Fp2 and Fq2 , re-
spectively.

Comparison of isomorphism classes

The results of the previous two §§ can be summarized compactly by the
following result.

Theorem 5.1 Let M be a positive integer prime to pD. Then the following
are in natural 1-1 correspondence:

• Isomorphism classes of supersingular abelian surfaces over F with R-
multiplication and a Γo(M)-structure;

• Isomorphism classes of (supersingular) abelian surfaces over k with an
O-action which is pure of type σ, and a Γo(M)-structure;

• Isomorphism classes of (supersingular) abelian surfaces over k with an
O-action which is pure of type τ , and a Γo(M)-structure.

Further, the following two sets are naturally in 1-1 correspondence:

• The set of isomorphism classes of supersingular abelian surfaces over
F with R-multiplication and a Γo(pM)-structure;

• The set of isomorphism classes of (supersingular) abelian surfaces over
k with an O-action which is mixed exceptional, and a Γo(M)-structure.

Proof . Both assertions follow immediately on comparing the statements of
Theorems 3.4, 4.15, and 4.16.

Notice that, in the statement of Theorem 5.1, no explicit reference is
made to the orientations of O and R. These orientations intervene, however,
in the “natural” 1-1 correspondences of the Theorem. It is easy to trace
how these correspondences change if we change one of the orientations. For
example, suppose that we change the orientation of R at a prime ` dividing
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D/q. Then our correspondences between characteristic p and characteristic q
objects are composed with the Atkin-Lehner style involution A 7→ A/A[λ]
on objects in characteristic p. (Here λ is the maximal ideal of R of residue
characteristic `.)

To make a concrete example of the statements of the Theorem, let us
consider the case where D = q and R is the matrix ring M(2,Z). To give a
supersingular abelian surface with R-multiplication and a Γo(M)-structure
is to give a supersingular elliptic curve with a Γo(M)-structure. Hence the
Theorem provides a 1-1 correspondence between the set of isomorphism
classes of supersingular elliptic curves, with Γo(M)-structures, over F and
pure pairs (A, ι) of type σ over k. This correspondence in fact depends only
on the orientation of O at the prime q, and it changes by the Frobenius
automorphism of F if the orientation changes. It is entirely canonical, once
one agrees to endow O with its canonical orientation and to choose F to be
an algebraic closure of Fq2 .

Similarly, we get a 1-1 correspondence between the set of isomorphism
classes of supersingular elliptic curves with Γo(Mp)-structures over F and
the set of mixed exceptional pairs (A, ι) over k, with Γo(M)-structures. This
correspondence depends both on the orientation at p and the orientation at
q of O; since these orientations are natural, the correspondence is again
completely canonical. If we change the orientation at p, we change the
correspondence by the Atkin-Lehner involution, relative to the prime p, on
the set of isomorphism classes of elliptic curves with Γo(Mp)-structures. It
is perhaps worth stressing that we could hope for no such distinguished
correspondence if we replaced, say, F by another algebraic closure F′ of Fq.
Indeed, we would then deduce (for instance) a bijection between the sets of
isomorphism classes of supersingular elliptic curves over F and F′. Such a
bijection amounts (in general) to an identification of the subfields of order
q2 of F and F′.

We turn now to a compatibility question concerning the correspondences
of Theorem 5.1. Suppose that (A, ι, C) is given over k, where (A, ι) is mixed
exceptional and C is a Γo(M)-structure on (A, ι). Then we may make pure
triples from the mixed triple (A, ι, C) in four ways. Indeed, as we have noted
repeatedly, there are unique subgroups Hσ and Hτ of A on which O acts
via σ and τ , respectively. The resulting quotients A/Hσ and A/Hτ carry
natural O-actions and Γo(M)-structures. Abusing notation somewhat, we
will call the resulting two triples (A/Hσ, ῑ, C) and (A/Hτ , ῑ, C). They are
respectively pure of type τ and pure of type σ by Proposition 4.7. Applying
the Frobenius automorphism (p) of k to these triples, we obtain two further
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triples (A/Hσ, ῑ, C)(p) and (A/Hτ , ῑ, C)(p), which are pure of type σ and τ ,
respectively. They are in fact the two triples in the fiber θ−1(A, ι, C), where
θ is as in Theorem 4.17.

Suppose that (B, j, CM , Cp) is the R-abelian surface which is associ-
ated to (A, ι, C) by Theorem 5.1. (We understand that CM and Cp are
Γo(M)- and Γo(p)-structures, respectively.) We deduce from (B, j, CM , Cp)
two abelian surfaces with Γo(M)-structures by the standard degeneracy con-
structions:

(B, j, CM ), (B/Cp, ̄, CM ).

Here, ̄ and CM represent the R-action and Γo(M)-structure on B/Cp which
come from those on B.

Proposition 5.2 The correspondences of Theorem 5.1 take (A/Hσ, ῑ, C)
and (A/Hσ, ῑ, C)(p) to (B, j, CM ). They map the two triples (A/Hτ , ῑ, C)
and (A/Hτ , ῑ, C)(p) to (B/Cp, ̄, CM ).

Proof . The proof consists of a simple tracing through of the definitions.
In particular, we make use necessarily of the definition we have given for
the orientation at p of the order End(A, ι, C). This definition is given in the
discussion which precedes Theorem 4.13.

Bad Reduction of Shimura Curves

We return to the theme of singular points on Shimura curves, which has not
been mentioned since the Introduction. Suppose that L is a maximal order
in an indefinite quaternion division algebra over Q. An L-abelian surface
(over a base T ) is a pair (A, ι), where ι is an injection L ↪→ EndT (A). The
pair (A, ι) is said to be special if the map ι satisfies the condition

TraceOT

(
ι(x)

∣∣∣ Lie(A)
)

= Tr(x) ∈ Q

for all x ∈ L, where “Tr” is the reduced trace L → Z. This condition,
automatic when the discriminant of L is invertible on T , was introduced in
[6]. In characteristic p, for p a divisor of the discriminant of L, it corresponds
to the condition that (A, ι) be “mixed.” For n a positive integer which is
invertible on T , a level-n structure on (A, ι) is an L-isomorphism γ:A[n] ≈
L/nL, where A[n] is the kernel of multiplication of n on A.
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Consider the functor on Z[ 1
n ]-schemes which maps T to the set of iso-

morphism classes of special (A, ι) with level-n structures. According to
Drinfeld ([6], Proposition 4.4), this functor is representable by a projective
1-dimensional Z[ 1

n ]-scheme Sn, provided that n ≥ 3. (For generalizations to
higher-dimensional Shimura varieties, see [31] and the summary in [24].) In
the following discussion, we fix n and write simply S for Sn. This gives us
the freedom to append a subscript to S to denote a base change.

Assume that n is prime to the discriminant of L, and take a prime
p dividing this discriminant. The formal completion of S along (p) was
determined by Cerednik [4] and Drinfeld [6], §4. Their result implies that
the curve Sn becomes a disjoint union of “degenerating curves” of the type
considered by Mumford [19] over the completion of the ring of integers of
the maximal unramified extension of Zp. In particular, the scheme SFp

can
be expressed as a projective curve whose normalization is a disjoint union of
rational curves, and whose only singular points are ordinary double points.
A modular interpretation of the singular points and irreducible components
of SFp

is implicit in Drinfeld’s method and is provided (essentially in the
form we need) by Zink in [31].

Namely, let k be an algebraic closure of Fp. The singular points of
S(k) are represented by those triples (A, ι, γ) for which (A, ι) is a mixed
exceptional pair ([31], Satz 3.10, cf. [24], 1.6). For the components, one has
a construction which associates a rational curve in Sk to each object (A, ι, γ)
and each L-stable subgroup H ≈ αp of A ([31], 5.13 and 5.15). The set of
k-rational points of this rational curve may be described as follows (in the
language of §4): The quotient A/H (with the induced action of L) is a pure
L-abelian surface. This quotient has a projective line of L-stable subgroups
isomorphic to αp (Proposition 4.5). Dividing by these subgroups, we obtain
a series of mixed L-abelian surfaces which includes in particular the pair
(A, ι)(p). These mixed surfaces inherit level-n structures from (A, ι).

In classifying the components of Sk, we may note that all pure L-abelian
surfaces arise by dividing mixed surfaces by an αp (Th. 4.9) and that all
components of Sk arise from the construction we have just sketched ([31],
5.15). It follows that the set of components of Sk is in bijection with the
set of isomorphism classes of pure L-abelian surfaces over k with level-n
structures.

Thus the singular points are represented by mixed exceptional (A, ι)’s
(with level structures), while the components correspond to pure (A, ι)’s
(with level structures). Furthermore, the recipe we have given for associat-
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ing components to pure surfaces provides the following additional piece of
information. Let (A, ι) be a mixed exceptional pair, and let H1 and H2 be
the two L-stable subgroups of A which are isomorphic to αp (cf. Proposi-
tion 4.4). Then the components corresponding to A/H1 and A/H2 (with
their induced L-actions and level structures) are the two components in-
tersecting at the singular point (A, ι)(p). Since all isomorphism classes of
triples (A, ι, γ) with (A, ι) exceptional are defined over the subfield Fp2 of
k, we may write instead that the components corresponding to the varieties
(A/Hi)

(p) are those which intersect at A.

We apply these results to the coarse moduli scheme C which was de-
scribed in the Introduction to this article. For this, we take L = O, where
O is as in §4. We again write the discriminant of O as the product pD and
let k be an algebraic closure of the residue field Fp2 of O at p.

Let M be a positive integer prime to the discriminant of O, and consider
the problem of classifying O-abelian surfaces with a Γo(M) structure. This
problem is “solved” by considering a multiple n ≥ 3 of M which is again
prime to the discriminant of O: we divide the scheme Sn by the appropriate
subgroup Γ of (O/nO)∗. Let C then denote the indicated quotient, so that
C is a curve over Z[ 1

n ].
It follows from general principles ([14], Proposition 3.2) that the curve

CFp
is again a projective curve whose normalization is a disjoint union of

rational curves, and whose only singular points are ordinary double points.
Moreover, the components and singular points of Ck are obtained by from
the components and singular points of Snk by division by Γ. This gives

Theorem 5.3 The singular points of the Shimura curve Ck represent the
isomorphism classes of triples (A, ι, CM ), where (A, ι) is a mixed exceptional
O-abelian surface and CM is a Γo(M)-structure on (A, ι). The components
of Ck are in bijection with the isomorphism classes of triples (A, ι, CM ),
where (A, ι) is a pure O-abelian surface. Further, let P be the singular point
of Ck parameterized by (A, ι, CM ). Then the two components meeting at P
correspond to the triples (A/H`, ῑ, CM )(p). Here H` denotes one of the two
possible O-stable subgroups of A which are isomorphic to αp, while ῑ and
CM denote the O-action and Γo(M)-structure which are inherited by the
quotient A/H`.

In view of Theorems 4.16 and 4.15, Theorem 5.3 may be described in
terms of quaternion arithmetic. For this, let E be the set of isomorphism
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classes of oriented Echler orders of level pM in rational quaternion algebras
of discriminant D. (The orientations are taken relative to the residue fields
of O at the various primes r dividing D.) Similarly, let V be the set of
isomorphism classes of oriented orders of level M in quaternion algebras of
discriminant D. There are two natural “degeneracy” maps E →→ V. The
first map, t: E → V, takes the class of an oriented order A of level Mp to
the class of the oriented order B ⊃ A in A ⊗ Q which is deduced from A
together with the orientation of A at p. The second map, h: E → V, first
changes the orientation of A at p and then applies the first map.

Theorem 5.3 states that the set of singular points of Ck is canonically
the set E . Secondly, the set of components is the union of two subsets Vσ

and Vτ (the sets of pure triples of type σ and type τ , respectively), each
of which is canonically V. Finally (because of the orientation at p we have
chosen for the endomorphism ring of an exceptional mixed triple) the two
components meeting at e ∈ E are t(e), viewed in Vσ and h(e), viewed in Vτ .

Consider the “quaternionic” graph G with the following description:

• The set of edges of G is the set E .

• The set of vertices of G is the set V × {1, 2}.

• An edge e ∈ E connects the vertices (t(e), 1) and (h(e), 2).

The author visualizes G with its vertices (v, 1) to the left and its vertices
(v, 2) to the right. Each edge connects a vertex from the left-hand group to
a vertex from the right-hand group. (Thus G is a “bipartite” graph.) Our
edges, if oriented, would presumably have their tails in the left-hand group
and their heads in the right-hand group. This motivated the choice of “h”
and “t” as symbols for the maps E →→ V.

Consider the dual graph attached to the curve Ck, whose vertices are
the components of Ck and whose edges are the singular points of Ck. The
edge which corresponds to a singular point P connects the two vertices
corresponding to the components meeting at P .

Theorem 5.4 The dual graph attached to Ck is the quaternionic graph G.

Proof . The Theorem is a restatement of Theorem 5.3 along the lines of
the discussion just above. The change introduced by the statement of the
theorem is that we number two copies of V, rather than index them by the
maps O →→ k. This is possible because of our choice of k as an algebraic
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closure of the residue field Fp2 of O at p. The residue map O → Fp2 defines
σ:O → k, and its conjugate by the non-trivial automorphism of Fp2 gives
τ .

We turn now to the Shimura curve X which was described in the Intro-
duction. We again let q be a prime dividing D and let R be a maximal order
in a quaternion algebra of discriminant D/q. Note that D/q is a product
of an even number of primes, so that R is a maximal order in an indefinite
rational quaternion algebra. For definiteness, we assume that R = M(2,Z)
if D = q. We also assume that orientations of R at the prime divisors D/q
have been fixed; these are isomorphisms between the residue fields of R and
of O at each prime dividing D/q. For each integer N ≥ 1 which is prime to
D/q, we have a modular curve Xo(N) over Q:

• If R = M(2,Z), we let Xo(N) be the classical modular curve Xo(N).

• If R is a maximal order in an indefinite quaterion division algebra,
we let Xo(N) be the coarse moduli scheme over Q attached to the
problem of classifying R-abelian surfaces with a Γo(N)-structure.

We are interested in the reduction of Xo(N) at the prime number q. If q is
prime to N , there is no problem: the curve Xo(N) extends naturally to a
curve over Z(q), whose special fiber we will call Xo(N)Fq

. The supersingular
points on Xo(N)Fq

are those represented by elliptic curves or R-abelian sur-
faces which are supersingular in the sense that they have no points of q-power
order over an algebraic closure of Fq. As noted in §3, the supersingular R-
abelian surfaces are automatically products of supersingular elliptic curves.
Moreover, in the case R = M(2,Z) it is equivalent to classify supersingular
elliptic curves or supersingular R-abelian surfaces.

Take F to be an algebraic closure of the residue field Fq2 of O at q, as
in §3. Then by Theorem 3.4, we have a canonical bijection between the set
of supersingular points on Xo(N)(F) and the set of isomorphism classes of
oriented Eichler orders of level N in a quaternion algebra of discriminant D.
Especially:

• The set of supersingular points on Xo(M) is canonically the set V.

• The set of supersingular points on Xo(Mp) is canonically the set E .

Now consider the curve Xo(Nq), where q is again prime to N . In the
case where R = M(2,Z), the curve Xo(Nq) has a well known model over Z(q)
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which was studied by Deligne-Rapoport [5] and by Katz-Mazur [13]. (See
especially [5], Ch. VI, Th. 6.9.) As noted in the Introduction, an analogous
model is available in the case where R⊗Q is a division algebra [5, 18, 3]. The
result is that the special fiber Xo(Nq)Fq

has two irreducible components,
each isomorphic to Xo(N)Fq

. The curve Xo(Nq)Fq
is obtained from its

normalization by the following construction: one attached a supersingular
point P on the first copy of Xo(N)Fq

to the point P (q) on the second copy.
The set of singular points of Xo(Nq)F is thus in bijection with the set of
isomorphism classes of oriented Eichler orders of level N in a quaternion
algebra of discriminant D. In particular:

Theorem 5.5 Let M be a positive integer prime to pD. The set of singular
points on Xo(Mpq)F is in bijection with the set E. The set of singular points
on Xo(Mq)F is in bijection with the set V.

By combining this result with Theorem 5.3 (or Theorem 5.4), we find a
1-1 correspondence between the sets of singular points of Xo(Mpq)Fq

and of
Ck. Similarly, we find a 1-1 correspondence between the set of components
of Ck and the disjoint union of two copies of the set of singular points of
Xo(Mq)Fq

. Finally, the map taking each singular point of Ck to the pair
of components which cross at that point may now be related to the two
degeneracy maps Xo(Mp) →→ Xo(M) (Proposition 5.2).
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Notes in Math. 800 (1980)
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