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Twists of Modular Forms and Endomorphisms
of Abelian Varieties

Kenneth A. Ribet*
Department of Mathematics, University of California, Berkeley, CA 94720, USA

1. Introduction

Let 4 and B be Abelian varieties over a number field k, and let I be a prime. Let V,
and V, be the Qadic Tate modules of 4 and B. Tate’s conjecture [19] for
homomorphisms 4— B asserts that the natural injection

(1.1) Homy(4, B)®Q, - Homyg,;q/x (V.4 V)

is an isomorphism for each finite extension K of k in a fixed algebraic closure k of
k. The main purpose of this paper is to verify Tate’s conjecture in the special case
where k=Q (but K is an arbitrary number field) and 4 and B are the Jacobians
J(N), J (M) of modular curves X,(N) and X,(M).

In doing this, it is easy to compute the right-hand side of (1.1), or at least its
dimension, since V, and ¥} are just (products of) l-adic representations attached to
modular forms. The problem is to “justify” this dimension by exhibiting many
homomorphisms 4 B. This is essentially what we do, except that we first reduce
to the case where A and B are each equal to the factor 4, of J,(N) attached to a
weight 2 newform f on I',(N).

Then the question becomes that of exhibiting an endomorphism of 4, each
time that f has an “extra twist,” meaning essentially that fis a twist of one of its
own conjugates. We show that this can be done by taking up some ideas of
Shimura [16, Sect. 4] concerning the “geometrical meaning” of twists. In the case
where f does not have complex multiplication, the full endomorphism algebra of
A, is described as the “crossed product algebra” attached to a certain cocycle
whose values are Jacobi sums.

Our interest in this subject was rekindled by a recent conversation with
Tunnell concerning his work relating divisors on X, (N)x X (M) with the L-
function of this surface [20]. Also related to this paper is the recent work of Atkin-
Li on twisting [1], to which little direct reference is made in the text below.
Further, after this paper was submitted for publication, Professor IThara informed
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the author that F. Momose had obtained results similar to those below, by
techniques which are essentially identical to ours. Momose studies the group of
twists of a newform of arbitrary weight (=2) and the implications of twisting for
the l-adic representation attached to such a form. His work will be appearing soon.

2. Eigenforms and Abelian Varieties

In this section, we review some results of Shimura concerning Jacobians of
modular curves, adopting the perspective of [16]. For ease of exposition, we
introduce the convention, to be in force throughout the remainder of this paper,
that all modular forms considered are to be cusp forms and of weight 2.

Let I' be a subgroup of SL,Z, intermediate between I',(N) and I'o(N). For
definiteness, let us in fact take

a b
R

where m is a (positive) divisor of N. Let S(I") be the space of forms on I', and for
nx1,let T, be the n-th Hecke operator on S(I'). Let X(I")/Q be the modular curve
associated to I', and let J(I') be its Jacobian. In Shimura’s theory, the T, arise from
certain correspondences on X(I')/Q, which are then viewed as endomorphisms of
J(I') by regarding J(I') as the Albanese variety of X(I'). We denote the en-
domorphisms by ¢,,n=1. We write Q,,, for the space of invariant differentials on
J(I'), which may be alternately viewed as the space of regular differentials on X(I").
These are Q-vector spaces whose dimension is the genus of X(I'). We write Q¢
for the corresponding space over C, ie., 2 J(n(? C. We have, canonically

asdslmodm},

Q1) Qppye=S).

For n an endomorphism of J(I'), we write #* for the (pullback) map it induces on
Q,ryc; this pullback is already defined on the vector space €, if ne EndoJ(I).
Via (2.1), we have

=T,

We consider the special case where m? divides N, so that “slashing” by the matrix

(1 u/m

0 1 ) for ue Z induces a map

a,:S()-S().
According to [16, Sect. 4], there is a (unique) endomorphism «, of J(I') such that
a*=q

u u*

This endomorphismis not defined over Q, but rather over the field of m-th roots of 1.
Returning to the general case where m* need not divide N, we let /=Y a,q"
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be a normalized eigenform in S(I'). Thus we suppose that
f1T,=a,f

for all n=1. [We remark that the definition of the T, depends on I', or at least on
N, so that f need not be an eigenform in S(I"") when I"CTI'.] The coefficient field
E;=Q(...a,...) is a number field, i.c.a finite extension of Q. If f'is fixed, we denote
it simply by E. Shimura associates to fan Abelian variety A=A, of dimension
[E:Q] given as a quotient of J(I'):

v:J(IN—-A.

The variety 4 and the map v are defined over Q, and the kernel of v is connected
(ie., is an Abelian variety). Further, we have an embedding 0 of E into (End4)®Q,
the Q-algebra of endomorphisms of 4/Q. For nx1, 6(a,) is given by a com-
mutative diagram

J == a0

v v
4 2 4

The space 2, of invariant differentials on 4 over C may be identified (via v*) with
the subspace of S(I') generated by the conjugates of of f (ce AutC).

Despite a remark made above, the form f may be viewed as an eigenform in
S(I''} for many subgroups I’ of I': it suffices that the level N’ of I’ be divisible by
the same primes as N. (See [18, Chap. 3] and especially Theorems (3.43) and (3.53).)
Using I' and one such I, and f, we construct two Abelian varieties 4 and A",

Proposition (2.2). The varieties A and A’ are isogenous over Q.

Proof. The inclusion I'CI" leads to a surjection X(I"')—X(I') and then a surjection
J(I'")>J(I') (Albanese functoriality), defined over Q. Composing this latter
quotient map with the quotient v:J(I)>A defining A, we obtain a map
@:J(I")—> A defined over Q. We clearly have ¢*(Q,)=v*(2,.), as we can easily
verify after tensoring with C. It follows that there is a unique isomorphism A of
Abelian varieties up to isogeny such that i-v'=¢. (Actually, A is a literal map
A’'— A because the kernel of v’ is connected.) By the uniqueness, A is defined over Q
since ¢ and v’ are defined over Q.

We now discuss the special role played by those eigenforms f which are in fact
newforms in the sense of ([6, 8], etc.). We consider only the groups I',(N), and write
S(N) for S(I',(N)). As is well known, for each divisor M of N and each divisor d of
N/M, the formula Y a,q4"—Y a,g"" defines a map

tra:S(M)—S(N).

If S(M)™=" is the subspace of S(M) generated by the newforms of level M, then
S(N)~ G@ @ trg, AS(M)Y).



46 K. A Ribet

This decomposition is echoed by a decomposition up to isogeny of J,(N), cf.
[7,Sect.2]. For each M, we consider the product []4 7 running over the set of

(normalized) newforms of level M, taken up to conjugacy. (For o€ AutC, the form
of=Y)0a,q" is a newform of level M if f=Y a,g" is such a newform. The Abelian
varieties 4 .and A, are the same.) This product is clearly a quotient of J,(M); i.e.,
the product of the structural maps J,(M)— A is surjective. Following [7, Sect. 2],
we let J,(M)"*" be the associated “optimal quotient” of J,(M), ie., that quotient
which is isogenous to []A4 s and so that the kernel of J,(M)-J (M)*V is
connected. One knows that there is a homomorphism (over Q)

Tar,aid 1 (N)=J (M)

such that 3 ,=t, ;. (Namely, t,, , is an appropriate “degeneracy operator,” cf.
[7,p. 138], followed by the quotient map J,(M)—J,(M)***)The map

1:J,(N)— ];[ ];[J(M ew

made by assembling the various t,, , is an isogeny. As a corollary, we note
explicitly the following fact.

Proposition (2.3). The Abelian variety J,(N) is isogenous over Q to a product of
Abelian varieties of the form A, where f is a newform of some level M dividing N.

As an application, we give the relation between A, and A, when ¢ is obtained
from f by stripping away those coefficients of f which are not prime to some
integer Q.

Proposition (2.4). Let f=Y a,q" be a newform on I' (M) and let Q > 1. Let g be the

form Y a,q", considered as an eigenform on I \(N) for a multiple N of M. Then
Q=1
A, and A, are isogenous over Q.

Proof. For each divisor d of N/M, we compose the map
Tag,atJ ((N) =T ((M)™™

with the quotient J,(M)"*¥— A, thus obtaining a map
®4:J(N)—A I

The space @¥(2, !,c) is the subspace of S(N) generated by f(¢%) and its conjugates.
The ¢, taken together define a map

@:J(N)»A;%... XA,

which is surjective, the surjectivity being a consequence of the fact that 7 is an
isogeny. In terms of modular forms, p*(2,,x. x4,c) is the direct sum of the
spaces @7(€,,c). As has already been suggested, for each d dividing N/M, the
space @f(€,,c) has as basis the distinct conjugates af(q®) of f(q%). Taking a
different point of view, for each ge AutC, we let V, be the subspace of
V=0*,, . «a,c) generated by the of! (¢ with d running over the divisors d of
N/M.Then Vis the direct sum of its (distinct) subspaces V,, and for each o we have

V,={heSIN)HT,=o(a)h forall pfN}.
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In particular, oge V,. Therefore, if
viJ (N)—4,
is the structural map defining 4, we have
VKR, )E V.
This implies that there is a unique map A of Abelian varieties up to isogeny,
defined over Q,
AtAp X .. XA ,—A,,
such that A-p=v.
View 4 as a tuple of maps (4,), 4, :A;~A,. We claim that 1, is an 1sogeny
For this, we first remark that f and g have the same coefﬁcwnt field, since E , is
generated by almost all of the coefficients a, of f. Thus A, and 4, have the same

dimension. So to show that A¥ is an 1somorphlsm and hence prove the claim, it will
be enough to show that i} is surjective. This map, however, is just the inclusion

v*:QAg/C»V

followed by the projection of ¥ onto its direct factor p*(Q, /). For the surjectivity,
we must show that, when g is written as a linear combmatlon

ch‘o-f(q )9

the coefficient ¢, of gf is non-zero. This, however, is evidently the case, since the
initial coefficient oa, of g is non-zero.

3. Twisting and “Inner Twisting”
Let f be a newform of level N, and let y be a (primitive) Dirichlet character of

conductor r. As is well known, there is a unique newform g= Y. b,g" character-

nx1

ized by the relation:
b,=a,x(p) for almost all p

(ie., for all but finitely many primes p). We have b, = x(n)a, for all n prime to r, but
not necessarily for all n. If M is the level of g, then N-r and M -r have the same
prime factors. If A is the Adele ring of Q and = s (resp.my) is the automorphic
representation of GL(2, A) associated to f (resp. g), then the relatlon between fand
g may be summarized by the formula

n,=n,Q.
If e, and g, are respectively the (“Nebentypus”) characters of f and g, then

—p .y2
g, =¢gp-x".
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We are mostly interested in the case where g turns out to be a conjugate af of f.
(As mentioned above, if ce AutC, then the form

af=} 0a,q"
is again a newform, with character o¢,.) We shall assume from now on in this

section that f is not a form which has complex multiplication in the sense that there
is a Dirichlet character ¢ % 1 such that

a,=g¢(p)a,

for almost all p.
Let I' be the set of embeddings

y:E—~C
having the following property:
There exists a Dirichlet character y such that y(a,)=x(p)a, for almost all p.
Since f is assumed not to have complex multiplication, the character y is
unique, given y, when it exists; we thus may denote it by x,. We clearly have
ex’=1),

if e=e¢, is the character of f Also, since yf and f have the same level N, the
conductor of y is divisible only by primes dividing N.
We now record some elementary facts concerning I'.

Proposition (3.1). Let o and t be embeddings of the coefficient field E=Q(...a,...) of
finto a field K. We have 6 =1y for some yeI if and only if there is a K*-valued
Dirichlet character ¢ such that

oa,=1a, ¢(p)
Jor almost all p. Moreover, if 6 =1y, then @ =1(y,).
Proof. Obvious.
Proposition (3.2). For yeI',y(E)SE.
Proof. We have xf =g"~ 1, (We use exponential notation at certain points below.
Thus "~ ! denotes ye-¢~ *.) Hence x, takes values in the field Q(e) generated by the
values of &. This implies

a,)=1x,(p)-a,eE,

as required, since E contains Q(e).
We may thus regard I as a subset of the group Aut(E) of automorphisms of E
over Q.

Proposition (3.3). The subset I' of Aut(E) is in fact an Abelian subgroup. For y,6el’
we have the cocycle identity

(3'4) x-yd = Xy ' ’Y(Xé) .
Proof. For y,6eI” we have for almost all p the equation

(¥é)a,) =r(xs(p)a,) =r(xs(P)x,(P)a, »
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which proves that I' is a group and establishes (3.4). The fact that I" is Abelian,
which we will not use below, follows from the two equations

2 _ov-1 2__p0—1
X),—E ’ X =€ .

We now let F=ET be the fixed field of I'. As Serre pointed out to the author,
F is the field generated by the numbers

ale(p)™', pes,

whenever S is a set of primes of density 1, contained in the set of primes not
dividing N. This fact follows from an argument using l-adic representations, which
we shall omit.

Proposition (3.5). Suppose that ¢ is a Dirichlet character. Let g=Y b,q" be that
newform which satisfies

b,=¢(p)a,
for almost all p. Then the field F does not change if we replace f by g.

Proof. We regard F as the subfield of C cut out by the subgroup of Aut(C)
consisting of those e AutC such that:

There exists a Dirichlet character y such that ca,= y(p)a, for almost all p.

If o and y satisfy this condition, then we have

ab,=(x-¢"~)p) b,

for almost all p, so that the field F made for g is contained in the field F made for f.
By symmetry, the two fields are equal.

Variant (3.6). We regard Dirichlet characters as functions on the maximal Abelian
quotient Gal(Q/Q)® ~ Z* of the Galois group of Q. Let H be a closed subgroup of
this group. It is natural to introduce the subgroup of I

I'y={yeT|y,is trivial on H}

and its fixed field Fy2F. Especially, if H is the group {+1}, the field Fy is
invariant under twisting as in (3.5), since the character ¢° ! in the proof of (3.5) is
even. The fields Fy occur in studying the l-adic representations attached to f,
cf.(4.4).

Example (3.7). As is well known, E is either a CM field or a totally real field.
Since f has no complex multiplication, these possibilities occur according as ¢ is
non-trivial or trivial, Let ¢c:E—E be the canonical “complex conjugation” of E.
Then cel and y,=¢~ !, cf. [12,p.21].

(3.8) Suppose that ¢ is real valued (i.e., of order 1 or 2). Then the characters , are
again real valued, and I is an elementary 2-group. Examples where ¢ is trivial and
where I' has order 2 are given in [3, 5]. Examples where ¢ is quadratic and I" has
order 4 are the form f(1 of [15, Sect. 6] and the forms discussed in [15, Sect. 7].
There are presumably examples where I is arbitrarily large.

(3.9) Suppose that f has trivial character (e=1) and N is square free. Then I' = {1}
i.e., f has no “inner twists.”
More generally, we will prove
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Theorem (3.9 bis). Let f be a newform on I |(N) with N square free, possibly one with
complex multiplication. Suppose that the Nebentypus character of fis trivial. Let x be
a non-trivial Dirichlet character, and let g=" b,q" be that newform which satisfies

b,=x(p)a,
for almost all p. Then the level of g is not square free.

Corollary (3.10). If f is as in (3.9bis), then in fact f does not have complex
multiplication.

Proof of (3.9 bis). Leth=Y c,q" be a newform of square free level M and character
¢. Let 7 be the associated representation of GL(2, A), and for each prime p, let 7, be
the component at p of 7. It is known that:

i) if pfM,n,is an unramified principal series representation of GL(2,Q,);

i) if p|M and if the character ¢ is ramified at p, then =, is again a principal
series representation 7(u,, u,) in which exactly one of the y; is unramified;

iii) if p|M but if ¢ is trivial at p, then 7, is the twist by an unramified character
of a “standard” special representation of GL(2,Q,) which does not depend on h.

(For this, cf. [2, pp. 118-119] and [4, Proposition 5.21].)

This applies in particular with = taken to be 7, or =, fand g being as in the
statement of the theorem. For each p, we have

Mo =T1,p®Xps

where g, is the component of x at p. Given that n; , is of types i) or iii) and that rr, ,
is of types i), ii) or iii), we are forced to conclude that y,, is trivial. Since this is true
for all p, x is trivial, a contradication.

Remark. The above results are very close to those of Atkin and Li [1, Sects.3 and
4]. See especially their (3.1) and (4.1).

(3.11) As a final example, we suppose that fis a newform whose coefficients a, are
rational. Let ¢ be a Dirichlet character and let g be the newform whose p-th
coefficient is ¢(p)a, for almost all p. The field of coefficients of g is the field
generated by the values of ¢, whereas, by (3.5), the field F made for g is just Q.
Hence, for trivial reasons, the group I' for g may be quite large.

4. I-Adic Representations Attached to Eigenforms (of Weight 2)

Let fbe a newform on I' (N) and let e :(Z/NZ)* — C* be its (Nebentypus) character.
As in [12], we regard ¢ as a character on G =Gal(Q/Q), and we may view it as
taking values in the coefficient field E of f. Let A=A, be the factor of J,(N)
attached to f (Sect. 2).

Let | be a prime (fixed in what follows), and let V' =V|(4) be the usual Q-adic
Tate module attached to A. Then V is simultaneously, and compatibly, a Q,[G]-
module and a free E ®Q,-module of rank 2. The action of G on V' is thus described
by a map

0:G— AutggoV~GL(2, ERQ),
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which is known to be the l-adic representation attached to f, because of the Eichler-
Shimura relation (see [15, Sect.1] and [18, Chap.7]). This means that g is
unramified at each prime p not dividing IN and that the image under ¢ of a
Frobenius element ¢,€ G for such a prime p has trace (resp. determinant) equal to
a, [resp. e(p)p]. Here we calculate trace and determinant relative to E ®Q,, i.e., by
viewing V as a free E®Q,-module rather than a Q,-vector space. One has a great
deal of information available about ¢ (cf. [12]), some of which we now recall.
Let ¥ be the space ¥V (X)Q,, and let g be the corresponding representation of G.

Thus V is free of rank 2 ov'er E®Q, an algebra which decomposes as a product of
copies of Q,, indexed by the enbeddings ¢ of E into Q,. For each g, define ¥/ to be
the tensor product

14 Q.

E@x Ql

where Q, is viewed as an E®Q, algebra via that Q,-algebra homomorphism
E®Q,—Q, which extends ¢. We have

v=I1%.
and this is just the decomposition of ¥ imposed by the decomposition of EQQ, as
a product of copies of Q,. We write g, for the representation of G given by V..
Proposition (4.1). We have End,V=E®Q,.

Proof (cf. [11, pp. 788-789]). We introduce the decomposition ¥ =[] V, induced by
the decomposition of E®QQ, as a product of l-adic fields E,. Each module V, is
simple over E,[G] [12, p. 29], and the action of G on V, is non-Abelian [12, p.36].
Hence End; g, V;=E,, so that Endg rgq, V=E®Q, and then

End; pegq, V=E®Q,.

This latter equation signifies, in turn, that End,; V, =Q, for each o. Similarly, the V,
are semi-simple as G-modules (i.e. as Q,[G]-modules) because the ¥, are simple.
Hence V, is in fact simple, putting the two statements together. Thus the statement
to be proved, which we rewrite

End, V=E®Q,,

signifies that the V, are pairwise non-isomorphic Q, [G]-modules. However, if V,
and V, are G-isomorphic, we find (taking traces) that

ga,=1a,
for almost all p, which implies that ¢ and t are equal.

Corollary (4.2). We have (Endy A)®Q=E. In particular, A is a simple Abelian
variety over Q.

Proof. The first statement follows because E is a priori given as a subalgebra of
(End, A)®Q and because of the embedding

(Endg4)®Q, -Endg V.
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The second statement follows from the first because an Abelian variety is simple if
and only if its endomorphism algebra is a (skew) field.

For more delicate questions, we distinguish the case where f has complex
multiplication in the sense of [12] : there is a non-trivial Dirichlet character ¢ such
that ¢(p)a,=a, for almost all p. The character ¢ is then necessarily the real
character corresponding to an imaginary quadratic field k, and we say that f has
complex multiplication by k. The “CM” case may be characterized as that where
the modules ¥, become Abelian on some open subgroup of G [12, (4.4)], and as
that where f is derived from a Hecke character y of k which satisfies

(@)=«

for all ze k* which are “multiplicatively” congruent to 1, modulo the conductor of
v [12, (4.5)]. If f has complex multiplication, then 4 is isogenous over Q to a
power of an elliptic curve with complex multiplication by k [14]. On the other
hand, if A has some factor of CM type, then f has complex multiplication [15,
Proposition 1.6].

Remark (4.3). If f does not have complex multiplication, then [12, (4.4)] the action
of each open subgroup H of G is non-Abelian on each module V;. It follows as in
the proof of (4.1) that we have

End, V,=Q,

for each embedding o of E intoQ,. We will use this fact in making calculations
involving Endy, V. (Here, and below, we use Endy... as an abbreviation for
End(-mm cee )

For the next result, we suppose that fis a form which does not have complex
multiplication. We recall the subgroups I'y of I' and their fixed fields Fy
introduced in (3.6). For each closed subgroup H of G, we write simply I'y and Fy

for the objects I'g, Fz where H is the image of H in Z* under the map
G-Gal(Q/Q)*P ~Z*.

Theorem (4.4). For each open subgroup H of G, we have isomorphisms
End Q,~(End; E)X Q.
( HV)@Q; (Endg,, )@Qz

Proof. To begin with, we have
(End, V) @ Q,~Endgm V.

Now ¥ breaks up into a sum of modules V,, each of which is simple as an
H-module and satisfies moreover

End, V,=Q,.

Thus to compute Endy,¥, we have only to determine when V, and V, are
isomorphic as H-modules, for o and t two embeddings of E into Q,. It is easy to
see that this occurs if and only if there is a character of finite order

(p:G-»Q;",
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trivial on H, such that ¥, and V,®¢ are isomorphic as G-modules. This condition
easily translates into the equality: ga,=(za,)¢(p) for almost all p. By (3.1) this
occurs if and only if o=1y for some yeI'y. Let X, be the set of embeddings
0:E—Q, Then we have

End, 7= [] End,,(l'] V,,y)zM(a, QY.

oeZi/l'u yel'n

where
a=#I'y=[E:Fyq]
b=# (2l y)=[Fy:Q].

This proves the theorem since
(End,, E)®Q,~M(a, Fp) (? Q~M(4,Q)".

Continuing to assume that f has no complex multiplication, we derive from (4.4)
a description of the l-adic Lie algebra attached to ¢. More precisely, the image ¢(G)
of g is an l-adic Lie group and its Lie algebra g is a subalgebra of gi(V), an algebra
which we may view as End V¥, furnished with its usual Lie algebra multiplication.

It is obvious from (4.4) that the algebras End, V (as H varies) form subalgebras
of a certain algebra & which is equal to Endy V whenever H is “sufficiently small”
in the sense that it is contained in the kernels of all x,(yel’). We then have
End,V =%, which implies that g is contained in Endy, V. A second constraint arises
from the fact that the determinant of g (taken, as usual, relative to E®Q,) is the
product of a character of finite order and the l-adic cyclotomic character, which is
Qj-valued and of infinite order. We have then gCh, where we define

h={meEnd, V|trmeQ,;} ;
but, on the other hand, g is not contained in
{me End, V|trm=0},

which is the semisimple part of §. Another fact is that g is reductive, since the
representation g is semisimple.

Proposition (4.5). We have g=}.

Proof. We again work over Q,, and we set

g‘:%‘ 0 _= D N —= 0 .

@Qu g Q@Qz b [)@Ql

We have §<h. For ceX,, we look at the image §, of § in EndV,=gl(V,). Since
Endﬁl{,=Q,, and since §, is reductive but not contained in si(V,), we find easily
that g (and hence §) maps onto gl(V,). If there is only one g, i.e. if E=Q, the proof is
complete.

Supposing that this is not the case, we consider, for each pair o, te X, with o0 %7,
the images g, , and b, , of § and § in gi(V, xV,). We find that ¥, and ¥, are §-
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isomorphic if and only if 6 = 1y for some yeI', by using the information obtained in
the proof of (4.4). If this is not the case, it follows by a standard analysis (cf. [13,
p.325]) that @, (and hence b,,) is equal to the image in gi(V, X V) of

{me End V|trmeQ},
namely
{(m,,m) e gl(V,) X gl(V))|trm,=trm,} .

If ¥, and V,, are g-isomorphic, they are also b isomorphic because of the double
commutant theorem. (We have

& =End; V2 End; V2End,, 7,

where o = End, ¥, and the right hand group is again Z.) We have then
8pe =D, ={(my,m)m,=i""m.i},

where
iV, >V,

is an h-isomorphism. (Note that i is well defined up to multiplication by scalars in
Qr) ]

Thus, to summarize, we have §,, =b,, for all pairs of distinct embeddings g, © in
Z,. Using the fact that § and b each have Abelian parts of dimension 1, we may
deduce the equality §=5, and thus the proposition, from the following result.

Lemma (4.6). Let X be a finite set, and for each g X let s, be a finite-dimensional
simple Lie algebra, over a field of characteristic 0. Let g and f be subalgebra of
[15,> with g€b. Suppose that

1) b maps onto each factor s,
2) g and b have equal images in s, Xs,, for ¥ 1.
The g and by are equal.

Proof. By the Lie algebra version of Goursat’s lemma (cf. [11, Lemma (5.2.1)]), the
image of | in s, xs, is either all of s, Xs,, or else the graph of an isomorphism
s,~s,. For ¢, 1€ Z, we say that o and 7 are equivalent if the kernels of the two
projections

hos h-s

a° T

are equal. Let ACZ be a set of representatives for the equivalence classes under
this equivalence. Then, clearly, the map
b1 =,
oeA

is an injection. It is surjective by [11, Lemma, p.790], since h maps onto each
partial product s, x s,. Similarly, the composite
g-b— []s,
geA
is surjective. Hence g=} as required.
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We now remove the assumption that f has no complex multiplication, and we
introduce a second newform f '=Za§,q". We let E', A", V", ... be the objects for f”
which correspond to E, A4,V ... for f.

Theorem (4.7). The following statements are equivalent :

1) there exists an open subgroup H of G such that Homg(V, V')#0.

2) The Abelian varieties A and A’ are each isogenousto powers of the same
Abelian variety over Q.

3) Either f and f" have complex multiplication by the same quadratic field k, or
else there are embeddings

0:E-»C, 0o :E'-C
and a Dirichlet character y such that

o'(ay)=0(a,)x(p)
for almost all p.

Proof. 3)=>2). If fand f” each have complex multiplication by k, then 4 and A’ are
each isogenous over Q to powers of an elliptic curve with complex multiplication
by k. Up to isogeny there is only one such curve, so we get(2). We next suppose that
fand ' do not each have complex multiplication by the same field k, but that we
have a,=y(p)a, for almost all p. Then, in fact, neither f nor f’ has complex
multiplication, so that both 4 and 4’ have no Abelian subvarieties of CM type.
From this we may easily deduce that E is its own commutant in (End 4) ®Q (and
similarly for E’) as in the proof of Theorem(2.3) of [10]. Hence the center of
(End A) ®Q is a field, so that, over Q, 4 is isogenous to a power of some Abelian
variety. Similarly for A". Thus, to prove 2), it suffices to show that A’ is a quotient
of a power of A4, or vice versa.

This is precisely what would follow from Proposition 7 of Shimura [16] under
the assumption that we have an equality

2.0'aq" =3 oaxnq".
(Note that A=4,,, A'=A4,;.) A priori, however, we have an equality only for
terms corresponding to those n which are prime to r=condy. Therefore, we let

g= % ad,

(n,r)=1

so that A_ is a quotient of a power of 4, by Shimura’s theorem. Since 4, and 4’ are
isogenous (2.4), we get (2).
2)=>1). Under the assumption 2), we have
Homg(4, A)+0
so that
Homg(4,A')%0
for some number field K. Letting H be Gal(Q/K), we obtain 1).
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1)=>3). Assuming 1), we may choose embeddings ce€ 2, T 2] such that

Homg(V,, V))#0.

a 't

This means that some submodule of V, is isomorphic to some submodule of V.
(The modules in question are of course semisimple.) For a form with complex
multiplication, the ¥, are Abelian (and reducible) on a subgroup of index 2 in G;
for a form without complex multiplication, the ¥/ are non-Abelian (and simple) on
each open subgroup of G. Hence it is clear that either fand f’ each have complex
multiplication or else neither form has complex multiplication.

In the latter case, we have an isomorphism of H-modules

VAV,

so that there is a character ¢ :G—»Q,*, trivial on H, such that
V.=V, Qp
as G-modules. This gives the equation

Ua,) =0(a,)e(p)

for almost all p, which leads to 3).

In the former case, we have to prove that fand f” have complex multiplication
by the same field. This reduces to the Tate conjecture for homomorphisms between
elliptic curves with complex multiplication, since 4 and A4’ are each isogenous to
powers of such curves. This case of the conjecture is well known (cf. the remarks in
[13, p.329]).

5. Endomorphisms of the Varieties 4,

Let f=) a,q" be a newform on I";(N), and let 4 be the variety 4. Our aim in this
section is to calculate the endomorphism algebra (End 4) ®Q of A. Since 4 is a
power of a CM elliptic curve when f has complex multiplication, we may consider
this case to be understood. Therefore, we assume for the remainder of this section
that f does not have complex multiplication. This enables us to speak of group I
and its fixed field F (Sect.3). We let E be, as usual, the coefficient field of f.

Theorem (5.1). The endomorphism algebra of A is a central simple algebra over F
which contains E as a maximal commutative subfield. Its degree over Q is

[E:Q]-[E:F]

Remarks. 1) The second statement of (5.1) follows from the first because the degree
over F of a central simple algebra over F having E as a maximal commutative
subfield must be [E:F]>

2) Theorem (4.4) shows that the degree over Q of (EndA)®Q is at most
[E:Q]-[E:F]. Hence to prove (5.1), it suffices to show that (End 4) ®Q contains
an algebra as described in (5.1).

The proof of (5.1) is the object of this section.
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We first note that we may replace 4 in (5.1) by “the” Abelian variety 4,
associated to

h="3% agq",

(n,N)=1

in view of (2.4). In defining this Abelian variety, we in fact use a subgroup of SL,Z
which is not of the form I';(M). Namely, let m be the least common multiple of N
and the conductors of the characters X, for yeI. It is easy to see that h is an
eigenform when considered as a modular form on the group

(¢ orim

Using Shimura’s construction described in Sect. 2, we attach to h an Abelian
variety B= A, using this group. Then B is given as a quotient of the Jacobian J of
the modular curve made with this group; as in Sect. 2, we let

v:J—-B

azdsl(modm)}.

be the structural map.

We let S be the space of (weight 2 cusp) forms on this group and write T for the
subspace v¥(Q2y,c) of S. Then T is generated by h and its conjugates oh (e AutC).
For oe AutC, we let w,eQp, be the differential on B corresponding to ¢h in T.
(Note that v* is injective because v is surjective.) We view E as a ring of
endomorphisms of B ®Q, the Abelian variety B considered as a variety “up to
isogeny.” In particular, E acts by pullback on Qpc, and we have for ecE the
formula

(5.2) e*(w,)=0e-0,,

in which oe is the complex number obtained by applying o to e. [To verify (5.2) we
may assume that e is a coefficient a, of E, and after we apply v*, (5.2) becomes the
identity

oh|T,=0(a,) oh.]

Now let y be an element of I', and let y = X, be the corresponding character. Let
r be the conductor of . For ueZ, let a,, be the endomorphism (denoted o, in

u
Sect. 2) xjvhose action on § is given by slashing by the matrix (1) : . Let &, be the
composite
vea,, :J>B.
Let
f,:J—>B

be defined by the sum )’ y~!(u)<&,,, in which the y~(u) are understood to be
umodr

elements of E, so that 7, is a homomorphism of Abelian varieties up to isogeny.
For the moment, we write simply # for fl,- '
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Claim (5.3). We have #*(Qp)CT.

Proof. 1t suffices to show that 7*(w,) belongs to T for each ¢. Using (5.2) and the
definitions, we find

-

1
)= ¥ 1w ohl|

umodr

where we have written y 7 for the character oy~ !. For a primitive character of
conductor ¢ we define as usual

glo)= 2 plu)e®™e.
u=1
Then we find by a well known calculation,

@)= . oxnoa,q

n=1

=g(x~Noy)]eT.

By (5.3), the map #:J— B factors across the quotient v:J— B, so that there is an
endomorphism n, of B®Q with the property that #,ov=4. Note that 1, is uniquely
determined by this property and as a consequence is defined over the field of r-th
roots of unity, since the «,, are defined over this field. The computation performed
in the proof of (5.3) gives the formula

(54 nyo,)=9(; )o,,

for all 6:E—C and all ye[I.
For y, éer, let

g, Daxs )
g

Since the product of the two characters in the numerator is the character in the
denominator (3.4), c(y,d) may be interpreted as a “Jacobi sum.” [Note that y;?
means y(x; !).] One knows that c(y, d) is an element of E such that

oy, 5) =

ac(y, 8)= T4 )90
’ 900"

for all ¢: E-C [17, p. 797]. We view c(y, ) as an element of (End B ®Q), whereas
the oc(y, §) are to be interpreted as complex numbers. Here are some formulas
involving the c(y,d) and elements of E:

(5.5) For eeE and yel we have n,-e=y(e)-n,.

Proof. Both sides of the equation are elements of (End B) ®Q, and to check this
equality it suffices to verify that they have the same action on the basis {w,} of
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Qp,c- We have
(n,€)*(w,)=e*(g(x, °)o,,)
=(7)e)9(x, ), ;
(e, ) (w,) = oy(e)n(w,)
=0oy(e)g(x, “)og, -
(5.6) For y,6eTI’ we have

Ny Ns=c(y,0)1,5.

Proof. This follows by a similar computation. We have

(C(Vs 5)'776)*(0)0) = GC(')’, 5)9()(;;”)(0”6
=90ty )90 )45 5
and similarly the operator 7,7, has the identical effect on c,.

(5.7 The map c:I' xI'-E* is a cocycle: for Y1,¥2 ¥3€I we have
(v, ¥2) €(1Y2¥3) =1v1 (¥, 73)] - (1, ¥273) -

Proof. This formula may be verified directly from the definition. Alternatively, by
computing 7, -n,,-n,. in two different ways, one finds that the two sides become
equal after right multiplication by My1927,€ ENA(B®Q). This latter element is
inversible (it acts invertibly on Qp,¢), so the formula must hold.

The above formulas show that the algebra generated by E and the 1, in
(EndB)®Q is a homomorphic image of a certain algebra  which is constructed
beginning with the Galois extension E/F and the 2-cocycle ¢ on its Galois group I'.
Namely, let & first be the E-vector space

¥=PEX,,

yel'
where the X, are formal symbols. By imposing on the X , the rules
(5.5bis) X, -e= y(e)X, foreeE and yel'
(5.6bis) X X;=c(y,0)X 5,

we make Z' into an associative algebra. It is well known that & is a central simple
algebra over F, the so-called “crossed product algebra” defined by the cocycle ¢ [9,
Theorem 29.6].

To complete the proof of (5.1), we have only to remark that the map

Z—(End B)®Q~ (End 4) ®Q
is injective because & has no two-sided ideals. It is then surjective, as already
remarked above, by (4.4).

Remark (5.8). Let M be the I'-module consisting of E*-valued Dirichlet charac-
ters. It is easy to show that the construction of the 2-cocycle ¢ beginning with the
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M-valued 1-cocycle b:y—>y, defines in fact a homomorphism
8:HNI,M)-»HXT,E").

It follows in particular that ¢ has order dividing 2 in H*(T', E*), since the square of
b is the 1-coboundary y+-¢~!. Now we may identify H%(I", E¥) with a subgroup of
the Brauer group Br(F) of F, in such a way that the class of ¢ in HXT,E¥*) is
mapped to the class of 4 in Br(F). A consequence is the fact that & has order 1 or 2
in Br(F), meaning that & is either a matrix algebra over F, or else a matrix algebra
over a quaternion division algebra with center F.

In general, it does not seem easy to distinguish between these two possibilities
by “pure thought.” However, one may show at least that & is a matrix algebra
over F in the case where all characters x, are even [ie., satisfy y,(—1)=1], by
making a local study suggested by the proof of ([12], Corollary 5.2). Further, & is
again a matrix algebra if the abelian variety 4, has “potential multiplicative
reduction” at some prime p of Q, as we may see by ([11], Corollary (3.3.9)).

6. Applications

Theorem (6.1). Let N and M be positive integers, let | be a prime number, and let k be
a finite extension of Q in Q. Then the natural map

ay ;:Homg(J,(N),J,(M)) ®Q, —~Hom,, @M (N), (J,(M)),
a priori injective, is an isomorphism.

Proof. We know that J,(N) is isogenous to a product []4 s of Abelian varieties
attached to newforms (2.3), and that J,(M) is similarly isogenous to a product
H A,. Hence it suffices to treat the situation, analogous to that of the theorem, in
which J,(N) and J,(M) have been replaced by varieties 4, and 4, respectively.
The map « in question is certainly an isomorphism whenever the right-hand group
is zero. Hence, by (4.7), we may confine our attention to the case where 4, and 4,
are each isogenous to powers of the same Abelian variety over Q, and hence over
some number field K. In verifying that a , is an isomorphism, it is legitimate to
consider only those K which are “sufficiently large” and, in particular, those
containing K,. Under this assumption, the question involving homomorphisms
A;— A, reduces to the analogous question for endomorphisms of A,.
Thus, to summarize, for (6.1) it is enough to show that the injection

ok, :(Endg4,) ®Q,— Endg,g/x)(Vi(4))

is an isomorphism for all newforms f and all number fields K. In the case where f
has complex multiplication, 4 is just a power of a CM elliptic curve, and this fact
is well known, as we mentioned earlier. We now assume that f does not have
complex multiplication. We consider (as we may) only those K such that Gal(Q/K)
is contained in the kernel of all the characters x,(yel') and such that all
endomorphisms of 4, are defined over K. The left-hand side then has (Q,—)
dimension [E:Q]-[E:F], by (5.1). The right-hand side has the same dimension, by
(4.4). Hence oy ;, known to be injective, is an isomorphism as needed.
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Now let N be a square-free integer, and let 4 be the product
l‘I JO( M)new’
M|N
where J(M)"" is the “new part” of J,(M) defined as in Sect. 2. Thus

JO(M)new — HAf ,

where f runs over the set of newforms on I'o(M), modulo the action of AutC.
Therefore, A is a similar product, running over forms f of level dividing N. We have
for each f,

Efg(EndAf)®Q,
so that

E=TIE,
is naturally a subalgebra of (End 4) ®Q.

Theorem (6.2). We have E =(End A) ®Q.
[This was proved as Proposition (3.2) in [10] by a method which relied on the
Deligne-Rapoport study of J,(N) at primes dividing N.]

Proof. For A, and A, two different factors of A, we have Hom(4 5 Ap)=0.
Indeed, were Hom(4 , 4 ;) non-zero, there would be by (4.7) and (3.10) automor-
phisms ¢ and ¢’ of C, and a Dirichlet character y, such that

o'(a,)=x(p)o(a,)
for almost all p. [Here we have adopted the notation
f=Xa4q" f'=XYaq
of (4.7).] By (39bis), the character y would be trivial, so that f* would be a

conjugate of f, implying that 4. =4 .
The prove the theorem, it is therefore enough to show that

(End4,) ®Q=E,

for each f. Since f does not have complex multiplication (3.10), we may apply (5.1)
to compute the degree over Q of (End4,)®Q. By (5.1) and (3.9), this degree is

[E,:Q].
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