
Math 55 First Midterm
February 21, 2013

Sketchy solutions provided by Ken Ribet

Please put away all books, calculators, cell phones and other devices.
You may consult a single two-sided sheet of notes. Please write clearly
and carefully in complete sentences. Explain what you are doing since
the paper you hand in will be your only representative when your work
is graded.

Problem 1 2 3 4 5 6 Total

Max. points 6 3 7 3 4 7 30

1. For each of these sets of premises, what relevant conclusions (if any) can
be drawn:

a. “All insects have six legs.” “Dragonflies are insects.” “Spiders eat
dragonflies.”

This problem was taken from the textbook. The obvious conclusion is that
spiders eat some creatures with six legs.

b. “I am either dreaming or hallucinating.” “I am not dreaming.” “If I am
hallucinating, I see elephants running down the road.”

Since I am not dreaming, I am hallucinating. Therefore, I see elephants
running down the road.

2. If r, s and t are real numbers, prove that the products rs, rt and st are
not all negative.

Assume that rs and rt are both negative; we will prove that st is positive
and therefore is not negative. The assumption implies that r, s and t are
all non-zero. If r is positive, then s and t are both negative, so that st
is positive. If r is negative, then s and t are both positive, so that rs is
positive. In both situations, rs is positive; that’s what we set out to prove.
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3. Consider the set of all sequences {an} whose terms an are binary digits.
(In other words, each an is 0 or 1.) Show that this set is uncountable.

The set in question is clearly infinite. Call it S. We claim that it is not
countably infinite and therefore that it is uncountable. To see this, we argue
by contradiction, supposing that S is countably infinite. Then there is a
first sequence {a1n}, a second sequence {a2n}, a third sequence {a3n}, and so
on, in such a way that each element of S is one of the numbered sequences.
Consider the sequence {bn}, where bn is defined to be 1− ann for n ≥ 1. In
other words, bn is 0 if ann is 1, and bn is 1 if ann is 0. It is clear that {bn}
cannot be any of the numbered sequences {ain}. Indeed, if {bn} were {ain},
we’d have bi = aii in particular. However, we have defined the bs so that
bi 6= aii. The fact that {bn} is not an {ain} shows that there are elements
of S that have not been numbered. This statement is in contradiction with
our previous statement that every element of S is one of the numbered
sequences. Since we have reached a contradiction, we must discard our
initial assumption that the set is countably infinite.

4. Suppose that p is a prime number and that x and y are integers. Show
that if xy and x+y are both divisible by p, then each of x and y is divisible
by p.

This problem was discussed in the book when p = 2; a number is divisible
by 2 if and only if it is even. The proof given in the book works in our case
as well. Namely, assume that xy and x + y are divisible by p. Because p
divides xy, p divides either x or y; this is a key property of prime numbers.
If p divides x, then it divides y as well because it divides x + y. Similarly,
p divides x if it divides y.

5. Find the smallest positive multiple of 100 that leaves remainder 9 when
divided by 19.

We want the smallest positive x so that 100x ≡ 9 (mod 19). Modulo 19,
100 is the same thing as 5 (because 100− 5 = 19 · 5). The inverse of 5 mod
19 is 4 (since 4 × 5 = 20), so x ≡ 4 · 9 ≡ 17 (mod 19). Hence the answer
appears to be 1700. Sage agrees that 1700 ≡ 9 (mod 19).

6. Let {an} be the sequence defined by the initial condition a0 = 3 and the
recurrence relation an = a0a1 · · · an−1 + 2. The sequence begins 3, 5, 17,
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257, 65537, and we’ll stipulate that all of the subsequent numbers are odd.
(We can establish this parity statement by mathematical induction, but not
until next week.)

a. For n ≥ 1, show that the two numbers an and a0a1 · · · an−1 are relatively
prime.

Every divisor of these two numbers divides their difference, which is 2.
Hence the only possible positive divisors of the two numbers are 1 and 2.
But the numbers are odd, so 2 divides neither of them. Hence 1 is the only
common divisor of the two and is therefore their gcd.

b. For each i, let pi be a prime number dividing ai. Explain why the primes
p1, p2, p3, . . . are all different from each other.

Suppose that pi = pn with i 6= n. Without loss of generality, we can suppose
that n is larger than i. The prime number pi divides a0 · · · an−1 because ai
is one of the factors in this product. It divides an as well because pi = pn
divides an. Therefore, a0 · · · an−1 and an have a non-trivial common divisor,
which is contrary to the conclusion of part (a).

Note: because the primes pi are all different from each other, we see that
there are infinitely many primes. In other words, we have proved Euclid’s
result about the infinitude of primes without using Euclid’s argument.

The numbers an are called the Fermat numbers. You can stalk them easily
on wikipedia or elsewhere. The first few are prime, and the next bunch (a
large bunch) are known to be composite. No one knows if infinitely many
of them are prime or if infinitely many of them are composite.
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