
Math 55 midterm exam, February 21, 2019

Problem 1 2 3 4 5 6 Total

Points 6 6 5 6 5 6 34

1a. If S is a subset of a countable set, is S necessarily countable? Explain your
answer carefully, outlining a proof or giving a counterexample.

Yes, S is countable. Suppose that S ⊆ A, where A is countable. Then A is either
finite or countably infinite. If A is finite, say of size n, then S has no more than
n elements and is therefore finite as well. Let us assume now that A is countably
infinite. Then, by definition, we can list off the elements of A:

A = { a1, a2, a3, . . .},

where the ai are distinct. We can imagine putting small circles around each
element ai that belongs to S. Then the elements of S are listed: the first element
of S is the first element of A with a circle around it, the second element of S is
the second circled element, etc. If list stops, there are only a finite number of
elements of S. (There might in fact be no circled elements of A; then S is the
empty set and has 0 elements!) If the list continues indefinitely, we have counted
off all elements of S and see that S is countably infinite.

b. Suppose that f : T → { 1, 2, 3, . . .} is an onto function. Is the set T necessarily
countable?

No, T is not necessarily countable. To see this, it’s best to exhibit a specific
example where T is uncountable. We can take T to be the set of real numbers
and define

f(x) = 1 + b |x| c, x ∈ T.

(In words, the right-hand side is 1 plus the floor of the absolute value of x.)
Note that |x| is non-negative, so b |x| c is non-negative as well; the addition of 1
ensures that f(x) is an integer ≥ 1. If n is a natural number, f(n) = n + 1;
therefore f(0) = 1, f(1) = 2, etc. Thus f is surjective (“onto”). We have seen
in our discussions that T is uncountable.

2. Using mathematical and logical operators, predicates, and quantifiers (where
the domain consists of all integers) express: “The difference of two positive
integers is not necessarily positive.”
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This is exercise 19b of §1.5 in the book. The solution given by Rosen is:

¬∀x∀y
(
(x > 0 ∧ y > 0) → (x− y > 0)

)
.

That seems good to me, though I might have put an extra pair of parentheses
around ∀x∀y

(
(x > 0 ∧ y > 0) → (x− y > 0)

)
.

3. Prove or disprove: if A and B are sets, then P(A×B) = P(A)× P(B).

The statement is incorrect for finite sets and therefore false in general: Suppose
that A and B are finite, with n and m elements, respectively. (Weirdly, mathe-
maticians often like to put n before m.) Then P(A× B) has 2nm elements but
P(A) × P(B) has 2n+m elements. More specifically, if A and B each have one
element, then A × B has one element and P(A × B) has two elements; on the
other hand, P(A) and P(B) each have two elements, so P(A) × P(B) has four
elements.

4. Use the Euclidean algorithm to find the gcd of 39 and 57 and to write the
gcd as a linear combination of 39 and 57.

We divide 39 into 57 and get

57 = 1 · 39 + 18, 18 = 57− 39.

We next divide 18 into 39 and get

39 = 2 · 18 + 3, 3 = 39− 2 · 18 = 3 · 39− 2 · 57.

We finally divide 3 into 18 and discover that the division is exact (remainder
= 0). Therefore 3 is the gcd; we have written the gcd as a linear combination
above.

5. Find the smallest non-negative integer satisfying the three congruences

x ≡

{−3 mod 19
−3 mod 20
−3 mod 21.

(Explain carefully how you got your result.)

The main point is that if x and y both satisfy the three congruences, then their
difference is divisible by 19 · 20 · 21. Since −3 satisfies the three congruences, the
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smallest positive number that satisfies the congruences is then −3 + 19 · 20 · 21.
(There is no need to compute this value, but if you did compute it you should
have gotten 7977.)

To see the main point, let d = x − y, so that d is divisible by each of 19, 20
and 21. Since gcd(19, 20) = 1, d is divisible by 19 · 20 (by the first lemma of last
Thursday’s lecture). You can see that gcd(19 · 20, 21) = 1 by using the second
lemma of that lecture—which is the next problem on this test. Applying the
first lemma again, one gets that d is divisible by (19 · 20) · 21, as required.

6. Use Bézout’s theorem to prove that if a is relatively prime both to b and to c,
then a is relatively prime to bc. In symbols:

gcd(a, b) = gcd(a, c) = 1
?−→ gcd(a, bc) = 1.

The statement to be proved is the second lemma in the notes for the February
14 lecture. You can find the proof there. For convenience:

“To prove the desired conclusion, it is enough to show that 1 is a linear combi-
nation of a and bc; indeed, if this is true, then any divisor of both a and bc will
be a divisor of 1 and therefore equal to 1.

“To write 1 as a linear combination of a and bc, we use Bézout to write

1 = ax + by, 1 = za + wc.

Multiplying these together gives

1 = (ax + by)(za + wc) = a(xza + wcx + byz) + yw · bc,

a linear combination of a and bc.”
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