
Math 54 Professor K. A. Ribet
Second Midterm Exam November 2, 2005

This exam was a 50-minute exam, which began at 2:10PM. There were 5 prob-
lems, worth 6, 7, 5, 5, and 7 points, respectively. The maximum possible score
was 30 points—same as for the first midterm. I expect that the scores on this
exam will be substantially higher than on the first midterm. Students who knew
the material very well will probably be able to finish the exam and get essentially
full credit on all the problems. These problems are not tricky or theoretical, as
far as I can tell. (I am writing this enroute to NY and won’t see students’
reactions to the exam until after I’ve finished writing the solutions.)

Please put away all books, calculators, electronic games, cell phones, pagers,
.mp3 players, PDAs, and other electronic devices. You may refer to a single
2-sided sheet of notes. Your paper is your ambassador when it is graded.
Correct answers without appropriate supporting work will be regarded skep-
tically. Incorrect answers without appropriate supporting work will receive
no partial credit. This exam has six pages. Please write your name on each
page. At the conclusion of the exam, please hand in your paper to your GSI.

1. Let R =


2 8 −1 1 0
0 6 −1 2 −3
0 0 −1 −3 −10
0 0 0 0 0

. Exhibit bases for the following three

spaces: the row space of R, the column space of R, the null space of R.

Row space: take the top three rows, i.e., the non-zero ones. Column space:
take the three left-hand rows, i.e., the ones with pivots. Null space: This space
consists of the tuples x = (a, b, c, d, e) such that Ax = 0. (In the equation, we
view x vertically.) The fourth and fifth variables are “free variables”; given any
d and e, you can solve for a, b and c uniquely by back substitution. There is a
fine basis of the null space consisting of two vectors of the form (?, ?,−3, 1, 0)
and (?, ?, ?, 0, 1). Unfortunately, some of the “question mark” entries have (small)
denomiators. Scaling the basis vectors to clear denominators, I came up with
(−2,−7,−60, 0, 6) and (8,−5,−18, 6, 0).

2. Find three linearly independent eigenvectors for the matrix

 3 0 −1
0 2 0

−1 0 3

,

whose characteristic polynomial is (λ−4)(λ−2)2. Is this matrix diagonalizable?



The matrix will be diagonalizable because the three independent eigenvectors
will form a basis for R3. There are two eigenspaces here, W2 and W4 in the
notation that we’ve been using. Now W4, which is the null space of A− 4I, will
be exactly one-dimensional because λ − 4 occurs only to the first power in the
characteristic polynomial. A basis for this 1-dimensional space is (−1, 0, 1). The
space W2 is at least one-dimensional, and it will be two-dimensional if and only
if A is diagonalizable. It turns out to be 2-dimensional, and one possible basis
for this space is given by the pair of vectors (1, 0, 1) and (0, 1, 0).

3. Let W be the span of the three vectors v1 = (1,−1, 3,−2), v2 = (1, 9, 1,−10)
and v3 = 2v1−v2 in R4. What is the dimension of W? Find an orthogonal basis
for W .

There are three vectors generating W , so one might forget that W is only two-
dimensional were it not for the first question. Looking at the first question, one
recognizes that W is spanned already by v1 and v2, since v3 is in the span of v1

and v2. Therefore, W is at most two-dimensional. It is exactly two-dimensional
because v1 and v2 are clearly not multiples of each other. To get an orthogonal
basis of W , we follow the G–Schmidt process and solve for a ∈ R so that v1 and
v2 + av1 are orthogonal. Now v1 · (v2 + av1) = v1 · v2 + a‖v1‖2 = 15 + 15a, so
it looks as if a = −1, here at 37,000 feet (with light chop). Note that v2 − v1 =
(0, 10,−2,−8) and (1,−1, 3,−2) ·(0, 10,−2,−8) = −10−6+16 = 0, as expected.

4. Evaluate the determinant of the matrix



1 0 0 2 4 6 8
0 1 0 5 12 13 9
0 0 1 −1 31 5 23
0 0 0 4 2 7 1
0 0 0 −2 1 3 −2
0 0 0 0 1 0 0
0 0 0 −1 2 5 3


.

If you do column expansion along the first column (which conveniently starts
with a 1 and then has only 0s), you can erase the first row and column. Do it;
do it again; do it again. We now have to evaluate the determinant of the 4 × 4

matrix


4 2 7 1

−2 1 3 −2
0 1 0 0

−1 2 5 3

. Expand now along the 3rd row, which again has all

0s except for a single 1. Our original 7× determinant is equal to the negative of

the determinant of the 3× 3 matrix

 4 7 1
−2 3 −2
−1 5 3

, i.e., to −125.
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5. Let A be an n×n (square) matrix. Suppose that A2 = A. Show that Ay = y
for all y in the column space of A. If the null space of A is {0}, show that A is
the identity matrix of size n.

If y is in the column space of A, then y = Ax for some x in Rn. We thus
have Ay = A(Ax) = A2x = Ax = y. If the null space of A is {0}, then A is
non-singular and therefore invertible. We can multiply the equation A2 = A by
A−1 and get the desired equation A = I. (Alternatively, we could say that the
column space of A is all of Rn because the null space has dimension 0, so that
the rank of A is n. Since A is the identity on the column space of A, it is the
identity on Rn.)
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