
Math 54 Professor K.A. Ribet

Final Exam December 17, 2005

This was a 3-hour exam, 5–8 PM (ugh!). There were 9 problems, worth 4, 7, 8, 7, 7, 6, 8,
7, and 6 points, respectively. The point values total 60 for this exam, which is intended to
represent 45% of the course. My guess is that students will find that there is a good mix
of easy and hard problems and that time will not be a big factor. (I hope that a lot of you
finish early and run off to have fun.)

Please put away all books and electronic devices. You may refer to a single 2-sided
sheet of notes. Your paper is your ambassador when it is graded. Correct answers
without appropriate supporting work will be regarded skeptically. Incorrect answers
without appropriate supporting work will receive no partial credit. This exam has 10
pages (and 9 problems). Please write your name on each page. At the conclusion of
the exam, please hand in your paper to your GSI. The notations “DE” and “FS”
are provided for Math 49 students. If you are one of those students, write “Math 49”
prominently on the cover of your exam.

Oh, yeah: problems 4 and 6 were “DE” problems that were supposed to be on differential
equations, while problems 5 and 9 were the “FS” problems—Fourier series.

1. Determine bases for the row and column spaces of

 1 2 −3
2 4 5

−3 −6 0

.

This 3×3 matrix has rank at most 2 because the second column is twice the first. The rank
is 2 because the third column is not a multiple of the first column. A basis for the column
space is the set consisting of the first and third columns, for example. The row space has
dimension equal to the dimension of the column space, i.e., to 2. A basis consists of any
pair of rows, since no two rows are proportional. One might ask for a linear dependence
relation among the three rows; there has to be one, if you believe in linear algebra, but
none is obvious to me. Well, OK: 15 times row #1 + 9 times row #2 + 11 times row #3
seems to be 0.

2. Let V be the vector space of 3× 3 real matrices. Let W be the set of matrices A ∈ V
such that AT = −A. Is W a subspace of V ? If so, find a basis for W .

Yes, W is closed under addition and scalar multiplication, and it’s non-empty (because
it contains the 0-matrix). Hence W is a subspace. There is an obvious basis with three
elements. The matrices in the basis have a single 1 in one of the three positions above the
diagonal and a corresponding −1 in the position below the diagonal gotten by reflecting
the chosen position through the diagonal. All other entries are 0. The dimension of the
space is 3.



Find the inverse of the matrix


1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

.

The answer is


1 −2 1 0
1 −2 2 −3
0 1 −1 1

−2 3 −2 3

, as I see on my computer. I hope that you’ll all get

this by applying a sequence of elementary row operations to the matrix gotten by writing
the identity matrix to the right of given initial matrix.

3. Let v = [1,−1,−1, 1]T and w = [1, 1, 1, 1]T. For x ∈ R4, let T (x) = (x · v)v + (x ·w)w,
where “·” is the usual dot product of vectors. Show that T is a linear transformation from
R4 to R4. Find two eigenvectors of T and one non-zero vector x such that T (x) = 0. (The
last sentence will be amended to read: “Find two eigenvectors of T , one with eigenvalue 0
and one with a non-zero eigenvalue.”)

That T is linear is easy to show, using the linearity of the dot product in each variable.
I won’t write down the details. Note now that v · w = 1 − 1 − 1 + 1 = 0; v and w
are perpendicular. Thus T (v) = (‖v‖2)v, which means that v is an eigenvector with the
non-zero eigenvalue ‖v‖2. Similarly, w is an eigenvector. To complete the answer to the
question, we need to find an x with T (x) = 0, which means an x that’s perpendicular to
the plane spanned by v and w. There is a whole plane of such vectors x. One possible x
is [1,−1, 1,−1]T.

4. Let A be a 2× 2 matrix such that

A

[
−1

4

]
= −4

[
−1

4

]
, A

[
0
1

]
= −4

[
0
1

]
+

[
−1

4

]
.

Find functions x(t) and y(t) with initial values x(0) = −2, y(0) = 11 that satisfy the

system of differential equations

[
x′(t)
y′(t)

]
= A

[
x(t)
y(t)

]
.

There is a unique matrix A with the indicated properties, since v :=
[
−1

4

]
and w :=

[
0
1

]
form a basis of R2. The matrix is

[
−8 −1
16 0

]
. In fact, we are talking about the exact

same system that was in one of the practice problems. The vector v is an eigenvector
for A with eigenvalue 0 while w is a pseudo-eigenvector. The general solution is X(t) =

C1e
−4tv + C2e

−4t(tv + w), where X(t) =
[

x(t)
y(t)

]
. We are given that

[
−2
11

]
= X(0) =

C1v + C2w =
[

−C1

4C1 + C2

]
. This leads to the values C1 = 2, C2 = 3.
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5. Suppose that f(x) = 0 for −π < x < 0, f(x) = 1 for 0 ≤ x ≤ π, and f(x + 2π) = f(x)

for x ∈ R. As usual, write the Fourier series for f(x) as
a0

2
+

∞∑
m=1

(am cos mx + bm sinmx),

Calculate the numbers am (m ≥ 0) and bm (m > 0).

In class, we studied the function g(x) that’s −1 from −π to 0 and +1 from 0 to π. We have
f(x) = (g(x) + 1)/2, so that the Fourier series for f will be a simple variant of the Fourier

series for g, which we have already calculated. The number a0 is
1
π

∫ π

0

1 dx = 1. The an

with n > 0 are all 0, as you can see by integrating cos nx dx or by noting that f(x) is a

constant function plus an odd function. We have bm =
1
π

∫ π

0

sinmxdx =
1

mπ
(1−cos mπ).

The number 1− cos mπ is 0 for m even and 2 for m odd.

6. Describe all pairs of numbers (y0, y
′
0) such that the solution y(t) to the initial value

problem y′′ − 2y′ − 3y = 0, y(0) = y0, y′(0) = y′0 satisfies y(t) → 0 as t → +∞.

This is a totally standard second-order homogeneous ordinary linear differential equation
with constant coefficients. The associated characteristic equation, r2−2r−3 = 0, has roots
+3 and −1. The general solution is y(t) = C1e

−t + C2e
3t. Clearly, y(t) → 0 for large t if

and only if C2 = 0. If y(t) satisfies the initial value conditions, then y0 = y(0) = C1 + C2

and y′0 = y′(0) = −C1 + 3C2. We have C2 = 0 if and only if y′0 = −y0. The pairs (y0, y
′
0)

that make y tend to 0 are those of the form (a,−a).

7. Let A be a matrix whose null space is {0}. Explain carefully why each of the following
statements is true: The rank of A equals the number of columns of A; The rows of A are
linearly independent if and only if A is a square matrix; The product ATA of the transpose
of A and A is an invertible matrix.

Let’s say that A is an m × n matrix: n columns, m rows. A general theorem, which I
hope that you feel free to quote, is that n is the sum of the rank of A and the dimension
of the null space of A. If the latter number is 0, then the rank of A is n, which is the
number of columns. This gives the first statement. The rank is also the “row rank,” i.e.,
the dimension of the row space. This is the space spanned by the m rows. Since it has
dimension n, we must have m ≥ n. In general, a spanning set is linearly independent if
and only if the number of elements in the set is the dimension of the space being spanned.
Here, we see that the rows are linearly independent if and only if m = n; this gives the
second statement. The third statement follows from the stuff that we did when we talked
about least squares and such. Namely, ATA and A have the same null space (Theorem 4.18
on page 258 of Hill). In this case, the null space is 0. The matrix ATA is thus a square
(n × n) matrix with 0 null space. Accordingly, it is invertible (Theorem 1.50 on page 47
of Hill).
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8. Let V be the vector space of all continuous functions on the real line. Consider the

inner product f · g =
∫ 1

0

f(x)g(x) dx on V . Find a non-zero function that is orthogonal

to the constant function 1 and to the functions x and x2.

Think about applying the Gram–Schmidt process to the sequence of functions 1, x, x2, . . ..
The fourth element of the sequence spat out by this process will be orthogonal to the first
three elements and therefore to the span of the first three elements. This span will include
1, x, and x2. Therefore, the fourth element of the sequence is an answer to this problem.
That element will be a polynomial x3+ax2+bx+c. This suggests a very direct way to do the
problem: write down x3 +ax2 +bx+c and view a, b and c as numbers that are determined
by the vanishing of three integrals. This leads to three equations in three unknowns:
3 + 4a + 6b + 12c = 0, 12 + 15a + 20b + 30c = 0, 10 + 12a + 15b + 20c = 0. Solving, we get

the polynomial x3− 3
2
x2+

3
5
x− 1

20
as a non-zero function that is orthogonal to 1, x and x2.

Clearing denominators, we can give 20x3 − 30x2 + 12x− 1 as an alternative answer to the

question. I started the G–S process on the string 1, x, x2, . . . and got as far as 1, x− 1
2

and

x2−x+
1
6
. I didn’t work out the next element of the series, which will be x3− 3

2
x2+

3
5
x− 1

20
.

I checked my results with http://mathworld.wolfram.com/LegendrePolynomial.html,
which was validating. Conclusion: I’m going to amend this problem so that you need only
be orthogonal to 1 and x.

9. Solve the partial differential equation 100uxx = ut on the region 0 < x < 1, t > 0,
subject to the boundary conditions u(0, t) = u(1, t) for t > 0 and u(x, 0) = sin 2πx−sin 5πx
for 0 ≤ x ≤ 1.

This exam has its share of misprints! I wanted to say u(0, t) = u(1, t) = 0, and I’ll add
that at the board.

Suppose that we had this problem with the simpler condition u(x, 0) = sin 2πx. I’d take
u(x, t) = eat sin 2πx, with a to be determined. Then ut = au while uxx = −4π2u. To have
ut = 100uxx, we need a = −400π2, and we’d get u(x, t) = e−400π2t sin 2πx.

If we had sin 2πx instead of sin 5πx, the 400 would turn into 2500, and we’d have u(x, t) =
e−2500π2t sin 5πx.

The answer to this question is then the difference between the functions u in the previous
two paragraphs.
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