
Math 250A, Fall 2004
Homework Assignment #9

Problems due November 16, 2004

The assignment consisted of five problems from Lang’s Chapter IV. I hope that you were
all OK with these problems. They are not easy, in the main, but they were intended to be
instructive.

3. Think about how to prove Taylor’s theorem for polynomials in the context of Math 1A.
Suppose that a is a constant and x is a variable, and let f be a polynomial. We have
f(x + a) =

∑
i

cix
i, and we want to determine the ci. We differentiate repeatedly with

respect to x and set x = 0 each time. If we differentiate zero times, and just set x = 0, we
find that f(a) = c0. If we differentiate once and set x = 0, we get that f ′(a) = 1× c1. At
the kth stage, we get that f (k)(a) = k!ck. A problem is that we need to know that the kth
derivative of f(x+ a) is really f (k)(x+ a). In calculus, we might see this by invoking the
chain rule. For polynomials, we can check directly that differentiation with respect to x
commutes with translation by a. For this, by linearity we can assume that the polynomial
is xn and check use the binomial theorem to check that the derivative with respect to x of
(x+ a)n is really n times the polynomial (x+ a)n−1.

In our context, we think of the coefficient ring as k[y] and apply what I said in the paragraph
above. We have f(x+ y) =

∑
i

ci(y)xi and will discover that i!ci(y) = f (i)(y). This is the

formula of the problem, except that Lang uses upper-case letters X and Y and has the
two variables permuted. In other words, his Y is my x and his X is my y.

5. If f(x) = x4 + 1, then f(x + 1) = x4 + 4x3 + 6x2 + 4x + 2 is Eisenstein at 2 and is
therefore irreducible. Thus f(x) is irreducible as well. Similarly, (x+ 1)6 + (x+ 1)3 + 1 =
3 + 9x + 18x2 + 21x3 + 15x4 + 6x5 + x6 is Eisenstein at 3. A cubic polynominal has a
factor of degree 1 if it has a non-trivial factor; but factors of degree 1 yield roots! The only
possible roots of x3 − 5x2 + 1 are ±1 by what Lang calls the integral root test (p. 185).
Since these are not in fact roots (even mod 2), the polynomial is irreducible.

I see that I’m using a lower-case x instead of Lang’s X; sorry.

For X2 +Y 2−1 over C, it is helpful to regard C[X,Y ] as the ring of polynomials in X over
C[Y ]. The quadratic polynomial X2+(Y 2−1), which I view as having coefficients in C[Y ],
has content 1: there is no non-constant polynomial in Y that divides both 1 and Y 2 − 1!
Also, it is irreducible as a polynomial over the field C(Y ) because it is Eisenstein at the
prime Y − 1. Hence it is irreducible in C[X,Y ].

6. Look at the bottom of page 185. If b/d is a root of f(X), then

anb
n + an−1b

n−1d+ · · ·+ a0d
n = 0.

It follows that b divides a0d
n. If b is prime to d, then b divides a0. Similarly, d divides an.

7. Prelude on notation: k is a finite field in this problem. Let p be the characteristic
of k. Then the number of elements in k is some power of p. The letter “q” is a traditional
symbol for this power of p.



Assume that f is zero at the origin of kn but not elsewhere on kn. As suggested by
Lang, we look at 1 − fq−1, a polynominal of degree d(q − 1) that induces on kn the
characteristic function of the origin. This is the same function that we get from the
product (1 − Xq−1

1 ) · · · (1 − Xq−1
n ). It follows that the two polynominals must have the

same reductions: You get the reduction of a polynomial by lowering all exponents that you
see until they’re at most q − 1; you do this by using that Xq

i is the same as Xi as far as
values are concerned. (See page 177 of our text.) The polynomial (1−Xq−1

1 ) · · · (1−Xq−1
n )

is its own reduction; its degree is n(q − 1). (The degree of a monomial is the sum of the
exponents in it; the degree of a non-zero polynomial is the maximum of the degrees of
the monomials that appear in it.) The polynomial 1− fq−1 has degree d(q − 1), where d
is the degree of f . Thus the reduction of 1 − fq−1 has degree at most d(q − 1). We get
n(q − 1) ≤ d(q − 1), which contradicts the hypothesis n > d. Hence f , if zero at 0, must
have at least one other zero.

On to part (b). Note that xq−1 = 1 for all x ∈ k∗ by Lagrange’s theorem in finite group
theory. For i > 0, xi is then the same thing as xj where j = i (mod q−1) is the remainder
on dividing i by q − 1. Thus xj is identically 1 if j is a multiple of q − 1, whereas xj is
not identically 1 if j is not a multiple of q − 1. (If i is positive but less than q − 1, xi − 1
cannot have q − 1 roots in k.) If j is a multiple of q − 1, then

∑
x∈k

xj is then the sum of

q− 1 1’s, so it’s q− 1 = −1 in k. If j is not a multiple of q− 1, then there is y ∈ k so that
yj 6= 1. We have

∑
x∈k

xj =
∑
x∈k

(yx)j = yj
∑
x∈k

xj , so that (1− yj)
∑
x∈k

xj = 0. Since (1− yj)

is non-zero, this forces the sum to vanish. We have now gotten to the last line of page 213.

So ψ(i) will now be
∑
x∈k

xi, which we have just computed to be −1 or 0. If we have a

tuple of integers (i1, · · · , in), when the displayed sum
∑

x1,···,xn

xi1
1 · · ·xin

n is the product of n

different single sums that we have evaluated; the value of the n-fold sum is ψ(i1) · · ·ψ(in),
as we were required to show. Further, f(x)q−1 is 1 if f(x) is non-zero but 0 if f(x) = 0.
Hence the sum

∑
x∈k(n)

(
1− f(x)q−1

)
does indeed count the number of zeros of f . The sum

is a number in k that represents the image of N (the number of zeros of f) in k. Thus it
gives us N mod p, where p is the characteristic of k. Since

∑
x∈k(n)

1 = qn ≡ 0 mod p, we

have the simpler congruence N ≡ −
∑

f(x)q−1. To prove that p divides N , we have to
show that this sum is 0 in k.

Write f(x)q−1 = f(x1, · · · , xn)q−1 as a polynomial
∑

(i1,···,in)

ai1,···,in
xi1

1 · · ·xin
n . After we sum

this sum over tuples (x1, · · · , xn), we will get essentially
∑

(i1,···,in)

ai1,···,in
ψ(i1) · · ·ψ(in). The

only wrinkle here is that the sum
∑

(x1,···,xn)

xi1
1 · · ·xin

n is clearly 0 in k if one of the ij is 0;
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indeed, the sum becomes q times a lower-dimensional sum. Hence we can and will confine
our attention to tuples (i1, · · · , in) where all of the ij are positive. Now the product
ψ(i1) · · ·ψ(in) can be non-zero only when each ij is divisible by q − 1. Since the ij are
going to be positive, the divisibility implies the inequality ij ≥ q−1 for each index j. Since
the sum of the ij is at most the degree of fq−1, which is q − 1 times the degree of f , we
can get a non-zero contribution to the sum only when the the degree of f is at least the
sum of variables. We are assuming however, that n > d, i.e., that the number of variables
is greater than the degree. Hence

∑
x

f(x)q−1 is zero in k. We are finished with part (b)

now, I think.

For part (c), we have polynomials f1, . . . , fr. We consider P := (1 − fq−1
1 ) · · · (1 − fq−1

r )
instead of 1− fq−1. This product is 1 at a point if and only if all fi are zero there. Hence
the number of common zeros of the fi is measured mod p by the sum

∑
x∈kn

P (x). The

argument works as before: the degree of P (x) is q − 1 times the sum of the degrees of the
fi and therefore is less than (q − 1)n. Accordingly, when we expand out and sum as in
part (b), we get 0.

For part (d), we note that the product polynomial introduced in part (a) represents the
characteristic function of the origin in kn. By replacing (x1, . . . , xn) by (x1 − a1, . . . , xn −
an), we can realize as a polynomial function the characteristic function of an arbitrary
n-tupe (a1, . . . , an) in kn. Every function is a k-linear combination of such characteristic
functions, so we can realize each function as a polynomial.

18. Let x = X. (It’s easier to type lower-case letters.) For part (a), we could consider the

polynomial x(x− 1)/2, for example. More generally, let
(
x

r

)
be the binomial polynomial

defined in part (b). Then
(
x

r

)
is well known to be an integer when x is a non-negative

integer. This means, concretely, that r! divides i(i − 1) · · · (i − r + 1) when i is positive.
Since this divisibility only depends on i mod r!, it’ll hold for all integers i.

For part (b), it’s helpful to introduce the ∆-operator as in part (c), except I prefer the
slightly different definition (∆f)(n) := f(n + 1) − f(n). (I find it forward-looking.) If

f(x) =
(
x

i

)
, then ∆f is

( x
i−1

)
for i positive, while ∆f = 0 when i = 0.

When P is a rational polynomial of degree r, we can write

P (x) = c0

(
x

r

)
+ c1

(
x

r − 1

)
+ · · · cr

as desired, except that the coefficients ci are a priori rational numbers. (The binomial
polynomials of degree ≤ d clearly form a basis for the Q-vector space of rational polyno-
mials of degree at most d.) Assume that P takes integer values on positive integers. We
have ci = (∆iP )(0) for each i. Since the right-hand side is an integer, ci ∈ Z. It follows
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from this that P takes integral values on all integers, since
(
x

i

)
has this property for

all i. We’ve proved that a polynomial with integer values on positive integers takes integer
values on all integers; from this, it follows by translating x that a polynomial that takes
integer values on all sufficiently large integers must take integer values on all integers. This
completes the proof of part (b).

In part (c), we know by (b) that ∆f can be written (for sufficiently large n, but let’s ignore
this complication for the sake of simplicity) as a linear combination of binomial coefficients(
x

i

)
. But

(
x

i

)
= (∆F )(x) with F (x) =

(
x

i+ 1

)
. Hence we can write ∆f = ∆G, where G

is a linear combination of binomial coefficients
(

x

i+ 1

)
(and therefore an integral-valued

polynomial). It follows by an easy argument that f(n)−f(0) = G(n)−G(0) for all n ∈ Z.
Said differently, this equation states that f and G differ by a constant. After adding a
constant to G, we get f = G.
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