
Math 250A
Solutions to Homework 8

(III.3) Let x ∈ R, x 6= 0. We wish to show that x has an inverse in R. To this end, note that multiplication
by x gives an additive map φx(r) = xr. Furthermore, this map is k-linear since for any c ∈ k, we have
φx(cr) = x(cr) = c(xr) = c · φx(r). Since R is entire, φx is injective. But an injective homomorphism of
vector spaces over a field must be an isomorphism. Thus φx is surjective, and in particular we can find a
y ∈ R such that xy = 1.

(III.9a) Consider the set M × S, under the equivalence relation:

(m, s) ∼ (m′, s′) ⇐⇒ ∃t ∈ S, t(s′m− sm′) = 0 (in M).

The relation is clearly reflexive and symmetric. To see it is transitive: let (m, s) ∼ (m′, s′) and (m′, s′) ∼
(m′′, s′′), so that there exist t, t′ ∈ S, t(s′m− sm′) = t′(s′′m′ − s′m′′) = 0. Then we have

s′tt′(s′′m− sm′′) = t′s′′ · t(s′m− sm′) + ts · t′(s′′m′ − s′m′′) = 0.

Write S−1M for the set of equivalence classes, and write an element of S−1M as m/s or m
s . Now we define

the following operations on S−1M :

m

s
,
m′

s′
∈ S−1M =⇒ m

s
+
m′

s′
=
s′m+ sm′

ss′
∈ S−1M,

r

s
∈ S−1A,

m

s′
∈ S−1M =⇒ r

s
· m
s′

=
rm

ss′
∈ S−1M.

To check that addition is well defined, suppose m
s = m0

s0
and m′

s′ = m1
s1

. So there exist t, t′ ∈ S such that
t(s0m− sm0) = t′(s1m′ − s′m1) = 0. Now we check that:

tt′[s0s1(s′m+ sm′)− ss′(s1m0 + s0m1)] = s′t′s1[t(s0m− sm0)] + sts0[t′(s1m′ − s′m1)] = 0.

Similarly, to check multiplication is well-defined, let r
s = r0

s0
and m

s′ = m1
s1

. So there exist t, t′ ∈ S such that
t(s0r − sr0) = 0 and t′(s1m− s′m1) = 0. Again we check:

tt′[s0s1 · rm− ss′ · r0m1] = t′s1[t(s0r − sr0)m] + str0[t′(s1m− s′m1)] = 0.

(III.9b) For any homomorphism φ : M → N of A-modules, we get a homomorphism φS : S−1M → S−1N

of S−1A-modules, via m
s 7→

φ(m)
s . Observe that this transformation φ 7→ φS is functorial in the sense that

if ψ : N → P is another map of A-modules, then ψS ◦ φS = (ψ ◦ φ)S .

Now we shall show, more generally, that if M
φ−→ N

ψ−→ P is exact, then so is S−1M
φS−→ S−1N

ψS−→
S−1P .

First note that if m
s ∈ S

−1M , then ψS(φS(ms )) = ψS(φ(m)
s ) = ψ(φ(m))

s = 0. Hence, we have the relation
Im(φS) ⊆ Ker(ψS). Conversely, suppose n

s ∈ KerψS , so that ψ(n)
s = 0. Then we may find a t ∈ S such that

0 = t · ψ(n) = ψ(tn). This gives tn ∈ Kerψ = Imφ, so that tn = φ(m) for some m ∈M . But now we have

φ
(m
st

)
=
φ(m)
st

=
tn

st
=
n

s
.

So we have proved the reverse inclusion Ker(ψS) ⊆ Im(φS).

Remark: as a consequence, we have S−1(Kerφ) = KerφS for any homomorphism φ : M → N of A-modules.

Indeed, from the exact sequence 0 −→ Kerφ −→M
φ−→ N , we get the exact sequence 0 −→ S−1(Kerφ) −→

S−1M
φS−→ S−1N , and hence the result follows. Similarly, we can show S−1(Imφ) = ImφS.

(III.10a) Write φ for the map M →
∏

pMp and let m ∈ Kerφ. Let a = {x ∈ A | xm = 0 in M }. It is easy
to show that a ⊆ A is an ideal. We claim that a = A.
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If not, then a must be contained in some maximal ideal p. Since the image of x in Mp is zero, there exists
some s ∈ A− p such that sx = 0 ∈ M . But this means that s ∈ a ⊆ p which is a contradiction! Hence, we
must have a = A. Since 1 ∈ a, we have x = 0.

(III.10b) More generally, we shall show that a sequence M
φ−→ N

ψ−→ P is exact if and only if the sequence

Mp
φp−→ Np

ψp−→ Pp is exact for all maximal ideals p. The forward direction (⇒) follows from Ex III.9b.
For the converse, we shall use the remark towards the end of Ex III.9b. First, let P ′ = Im(ψ ◦ φ) ⊆ P .

Then for any maximal ideal p,

P ′
p = (Im(ψ ◦ φ))p = Im((ψ ◦ φ)p) = Im(ψp ◦ φp) = 0.

Since P ′
p = 0 for all maximal ideals p, by part (a), P ′ = 0. So Imφ ⊆ Kerψ. Now let N ′ = Kerψ/ Imφ.

Again, localizing at each maximal ideal p, we get

N ′
p = (Kerψ/ Imφ)p = (Kerψ)p/(Imφ)p = Ker(ψp)/ Im(φp) = 0.

By part (a) again, N ′ = 0 so that Kerψ = Imφ.

(III.10c) We shall show that, in fact, M → S−1M is injective for any multiplicative set S not containing 0.
Indeed, suppose m ∈ M is in the kernel of M → S−1M . Then m

1 = 0 so there exists s ∈ S, sm = 0. Note
that s 6= 0. Since M is torsion-free, this can only happen if m = 0.

Remark: Hence when A is entire, it is natural to look at M as a subset of S−1M . In fact, any S−1M
can be considered as a subset of T−1M , where T = A − {0}. For convenience, we often write the image of
m ∈ M in S−1M as m as well. This interplay between elements of M and S−1M will be heavily exploited
in the next question.

(III.11) M is a given finitely generated torsion-free module over the Dedekind ring o. Following the hint,
for any prime ideal p, the module Mp is finitely generated over op (just take the image of the generators of
M). We note that it is torsion-free. Indeed if r

s ∈ op, ms′ ∈Mp, rmss′ = 0; then t · rm = 0 for some rt ∈ o− p.
Since rt 6= 0, we have m = 0.

Now let F be a finite free o-module, and f : F → M be a surjective map. For any prime ideal p, lo-
calize to get fp : Fp →Mp, which is surjective by Exercise 10(b). Now Mp is a finitely generated torsion-free
module over op. op is principal (see Ex II.15), and so by Theorem III.7.3, Mp is free and fp : Fp →Mp has
a splitting gp : Mp → Fp such that fp ◦ gp = idMp . Let {m1, . . . ,mr} be a set of generators for Mp over op.
For each mi, gp(mi) ∈ Fp, so we can find a ci ∈ o− p such that ci · gp(mi) ∈ F . Then cp = c1c2 . . . cr ∈ o− p
satisfies cpgp(M) ⊆ F .

Next, we prove that the set of cp’s generate the unit ideal. Indeed, let this ideal be a. If a 6= o, then
a ⊆ p for some maximal ideal p. In particular, cp ∈ p. But by our construction, cp ∈ o− p which produces a
contradiction. So (cp) generates (1).

Now we can find finitely many cpi ’s and elements xi ∈ o such that
∑
i xicpi = 1. Let g : M → F be a

map defined by
g(m) =

∑
i

xicpi
gpi

(m) =
∑
i

gpi
(xicpi

m).

Since for each i, cpi
gpi

(M) ⊆ F , we see that g is indeed a map from M to F .

Finally, we need to show f◦g = idM . Letm ∈M , so that f(g(m)) =
∑
i f(gpi(xicpim)). But fpi◦gpi = idMpi

.
Hence f(g(m)) =

∑
i xicpi

m = m, and M is a direct summand of the free module F .

Remark. A closer inspection of the proof reveals that we’ve proven something stronger: if M is a finitely
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generated module over a Noetherian ring A, and Mp is projective over Ap for each prime ideal p, then M is
projective over A. The converse is true as well (and quite easy to prove): if M is a projective module over
any ring A, then S−1M is projective over S−1A.

(III.12b) Let S = o − {0}, so that the field of fractions K is equal to S−1o. The isomorphism f : a → b of
o-modules then extends to an isomorphism fK : S−1a → S−1b of K-vector spaces. The injection a ↪→ K
of o-modules then extends to an injection S−1a ↪→ S−1K of K-vector spaces. Clearly we have a natural
isomorphism S−1K ∼= K (of K-vector spaces), so this gives S−1a ↪→ K. Since a 6= 0, S−1a must have
positive dimension over K. Thus S−1a ∼= K. This gives a K-linear map fK : K → K.

Finally, for any r ∈ a, we have f(r) = fK(r) = r · fK(1) = rc. Thus, f = mc and b = f(a) = mc(a) = ca.

(III.12c) We have a map a−1 → a∨ = Homo(a, o), given by (b 7→ mb = (x 7→ bx)). To show that this map is
injective, suppose b ∈ a−1, mb = 0. Then ba = 0, and since a 6= 0, b = 0.

To show that the map is surjective, suppose φ ∈ a∨, i.e. φ : a → o is a homomorphism of o-modules.
Suppose further φ 6= 0. We now claim that φ is injective. Indeed, if not, we can find x, y ∈ a such that
φ(x) = 0, φ(y) 6= 0. Multiplying x and y by some element of o, we may assume they lie in o. Then
φ(yx) = yφ(x) = 0 but φ(xy) = xφ(y) 6= 0, which is a contradiction.

Hence, Im(φ) is an ideal of o which is isomorphic to a. By part (b), φ : a → Im(φ) must be multipli-
cation by some element c ∈ K. The fact that ca ⊆ o then implies that c ∈ a−1. So we have an isomorphism
a−1 ∼= a∨. Finally,

a∨∨ ∼= (a−1)∨ = (a−1)−1 = a.

Remark: a closer inspection of the proof tells us that a−1 = a∨ for any ideal a of an entire ring o. However,
we need the fact that o is Dedekind in order to conclude a∨∨ = a.

(III.13a) Let S = o − {0}, and K = S−1o be its field of fractions. Since M is finitely generated over o,
V = S−1M is a vector space over K of finite dimension n. Since M is projective, it is torsion-free and thus
the map M → S−1M is injective.

Now pick a basis of V . Multiplying by a nonzero constant if necessary, we may assume this basis {m1, . . . ,mn}
is a subset of M . Let F ′ ⊆M be the submodule generated by the mi’s. Now {mi} freely generates F ′ since
it is linearly independent over K. This gives us the construction of F ′ ⊆M .

On the other hand, M has a finite generating set {m′
1, . . . ,m

′
t}. Each m′

i can be written as a linear com-
bination of mi’s with coefficients in K. Multiplying throughout by a common term, we see that for some
si ∈ S, sim′

i ∈ ⊕iomi = F ′. Let s =
∏
si. Then m′

i ∈ s−1F ′ for each i, and so M ⊆ s−1F ′. Hence we have
F := s−1F ′ ⊇M ⊇ F ′, where F and F ′ are both free of rank n.

Remark: observe that F ′ (resp. F ) has a basis {m1, . . . ,mn} (resp. {m1
s , . . . ,

mn

s }). The rank n is then the
dimension of S−1M over S−1o = K.

(III.13b) Let F0 ⊆ F be the submodule generated by m1
s . And let M0 = M ∩ F0, F ′

0 = F ′ ∩ F0. Hence we
have F0 ⊇ M0 ⊇ F ′

0. Now the map φ : F0 → o which takes r · m1
s 7→ r is an isomorphism of o-modules.

Under this map, a = φ(M0) is then an ideal of o. Hence, we get an exact sequence of o-modules:

0→ a→M →M/M0 → 0.

Next, we claim that M/M0 is projective. By Ex 11, it suffices to show M/M0 is torsion-free. But this is
clear, because we have an injective map M/M0 = M/F0 ∩M ↪→ F/F0. Since M/M0 is isomorphic to a
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submodule of F/F0
∼= o which is torsion-free, M/M0 must be torsion-free as well.

Having established the fact that M/M0 is projective, we now know the above exact sequence splits, and
M ∼= a ⊕ (M/M0). But we have F/F0 ⊇ M/M0 ⊇ F ′/F ′

0. If n = 1, then all these modules are 0, and the
proof is complete. Otherwise, the endterms are free of rank n− 1. Now apply induction on n.

(III.13c) We know that M ∼= ⊕ai for some ideals ai of o. Now repeatedly apply Ex III.12a (or HW 7, problem
7):

M ∼= (a1 ⊕ a2)⊕ a3 ⊕ · · · ⊕ an ∼= (o⊕ a1a2)⊕ a3 ⊕ · · · ⊕ an

∼= o⊕ (o⊕ a1a2a3)⊕ · · · ⊕ an · · · ∼= on−1 ⊕ (a1a2 . . . an).

Let us define a map K0(o)→ Pic(o), which takes M ∼= on−1 ⊕ a 7→ a. The hard part is show that this map
is well-defined. For this, let us suppose modules M and M ′ have the same image in K0(o). Hence there are
finite free modules F and F ′ such that F ⊕M ∼= F ′ ⊕M ′. Writing M ∼= on−1 ⊕ a and M ′ ∼= on

′−1a′, we get
om−1 ⊕ a ∼= om−1 ⊕ a′ (where m is the rank of both sides).

Localizing at S = o−{0}, we get an isomorphism of vector spacesKm ∼= Km. Write this map as anm×mma-
trix M with coefficients in K. By assumption, we have M(om−1⊕a) = ⊕mi=1Ni, where N1

∼= · · · ∼= Nm−1
∼= o

and Nm ∼= a′. Perform elementary row operations to reduce the matrix M to a diagonal matrix and observe
that the operations have the following effect on the image M(om−1 ⊕ a):

(i) Multiply column i by c ∈ K∗: replace Ni by cNi.
(ii) Swap columns i and j : swap Ni and Nj .
(iii) Add columns i to columns j : no effect on the image of M .

Hence, we have a diagonal matrix M which takes om−1 ⊕ a
∼=−→ om−1 ⊕ a′. But this means a = ca′ for

some c ∈ K∗, so a and a′ have the same image in Pic(o).

The map is clearly injective and surjective. It is a homomorphism of groups, since the direct sum of
M ∼= on−1 ⊕ a and M ′ ∼= on

′−1 ⊕ a′ is on+n′−2 ⊕ a⊕ a′ ∼= on+n′−1 ⊕ aa′. Hence, we have an isomorphism of
groups K0(o) ∼= Pic(o).

(III.15) Let us label the horizontal maps of the diagram:

M1
φ1−−−−→ M2

φ2−−−−→ M3
φ3−−−−→ M4

φ4−−−−→ M5

f1

y f2

y f3

y f4

y f5

y
N1

ψ1−−−−→ N2
ψ2−−−−→ N3

ψ3−−−−→ N4
ψ4−−−−→ N5

(a) Suppose f1 is surjective and f2, f4 are injective. Suppose m3 ∈ M3, f3(m3) = 0. Then f4 ◦ φ3(m3) =
ψ3◦f3(m3) = 0 and since f4 is injective, φ3(m3) = 0. So, m3 = φ2(m2) for somem2 ∈M2. Now ψ2◦f2(m2) =
f3 ◦ φ2(m2) = f3(m3) = 0. Hence f2(m2) ∈ Kerψ2 = Imψ1, and f2(m2) = ψ1(n1) for some n1 ∈ N1. But
f1 is surjective, so n1 = f1(m1) for some m1 ∈ M1. This gives f2(m2) = ψ1 ◦ f1(m1) = f2 ◦ φ1(m1). Since
f2 is injective, we get m2 = φ1(m1) =⇒ m3 = φ2 ◦ φ1(m1) = 0. Thus, f3 is injective.

(b) Now suppose f5 is injective and f2, f4 are surjective. Let n3 ∈ N3. Since f4 is surjective, there
exists an m4 ∈ M4, f4(m4) = ψ3(n3). Now f5 ◦ φ4(m4) = ψ4 ◦ f4(m4) = ψ4 ◦ ψ3(n3) = 0, and since
f5 is injective, φ4(m4) = 0. Thus, m4 ∈ Kerφ4 = Imφ3, and we can write m4 = φ3(m3), m3 ∈ M3. Let
n′3 = f3(m3). Then ψ3(n′3) = ψ3◦f3(m3) = f4◦φ3(m3) = f4(m4) = ψ3(n3), and so n3−n′3 ∈ Kerψ3 = Imψ2.
Write n3 − n′3 = ψ2(n2), n2 ∈ N2. Since f2 is surjective, n2 = f2(m2) for some m2 ∈ M2. Then
f3(m3 + φ2(m2)) = f3(m3) + ψ2 ◦ f2(m2) = n′3 + ψ2(n2) = n3. Hence f3 is surjective.

Remark. I know the above looks really confusing. The process, called diagram-chasing, is more easily under-
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stood through a live demonstration on a chalkboard.

(III.17a) For any integers m ≥ n ≥ 0, we have pmZ ⊆ pnZ. Hence, this gives a surjection pm,n : Z/pmZ →
Z/pnZ. For any m ≥ n ≥ n′, the inclusion pmZ ⊆ pnZ ⊆ pn

′
shows that we have pn,n′ ◦ pm,n = pm,n′ .

Hence, the abelian groups An = Z/pnZ form a projective system.

An element of the inverse limit Zp consists of an infinite-tuple (. . . , c2, c1, c0), where each ci ∈ Z and
ci+1 ≡ ci (mod pi). If c ∈ Z/piZ with c ∈ Z, then the element (. . . , c, c, c) maps onto c. Hence Zp → Ai is
surjective for each i. Note that this gives an injection Z ↪→ Zp.

Next, suppose (ci), (di) ∈ Zp are non-zero elements. Then there exist indices m,n such that cm 6= 0,
dn 6= 0. This means cm is not a multiple of pm. Since cm+n ≡ cm (mod pm), we also know that cm+n is not
a multiple of pm. Likewise, dm+n is not a multiple of pn. But this means that cm+ndm+n is not a multiple
of pm+n, and hence (ci)(di) 6= 0.

Now, p ∈ Zp is not a unit. Indeed, if p · (di) = 1, then in particular p · d1 ≡ 1 (mod p) which is im-
possible. On the other hand, we shall prove that if (ci) is not divisible by p, then (ci) is a unit in Zp. For
this, we note that ci ≡ c1 (mod p) for all i ≥ 1. Since each ci is coprime to p, we can find a di such that
cidi ≡ 1 (mod pi). Since ci+1di+1 ≡ 1 ≡ cidi (mod pi) and ci+1 ≡ ci (mod pi) for each i ≥ 1, we have
di+1 ≡ di (mod pi). Hence (di) is an element of Zp and (ci)(di) = 1. We have thus proven that any element
of Zp, which is not divisible by p, is a unit. So Zp is a local ring with maximal ideal (p).

Finally to wrap things up, we want to show that Zp is factorial. Let (ci) ∈ Zp be non-zero. Then there
is a maximal index m such that cm = 0. Note that since c0 = 0 we always have m ≥ 0. Now, for any
i ≥ 0, cm+i is divisible by pm but not by pm+1. So we can write cm+i = pm · di, for a unique di modulo pi.
Since cm+i+1 ≡ cm+i (mod pm+i) we have di+1 ≡ di (mod pi), and (di) is an element of Zp. Furthermore,
pm · (ci) = (di) and (di) is a unit since d1 6≡ 0 (mod p). Hence, every nonzero (ci) is a unit multiplied by
some pm and Zp is factorial.

Remark. For the last paragraph, it actually suffices just to show Zp is noetherian. But that doesn’t seem
much easier than proving directly Zp is factorial.

(III.17b) We shall define maps φ : lim←− Z/(a)→
∏
p Zp and ψ :

∏
p Zp → lim←− Z/(a).

Let p be prime. For each i ≥ 0, let a′ = pi and we have a map φi : lim←− Z/(a) → Z/(a′) = Z/(pi).
By the universal property of inverse limits, we obtain a map lim←− Z/(a)→ Zp. Since p can be any prime, by
the universal property of direct products, we get a map φ : lim←− Z/(a)→

∏
p Zp.

For the reverse map, let a be a positive integer. For any prime p, let ν = νp(a) be the highest power
of p dividing a. We get an isomorphism of rings Z/(a) ∼=

∏
p Z/(pνp(a)). Compose this with the map∏

p Zp →
∏
p Z/(pνp(a)) to get

∏
p Zp → Z/(a). By the universal property of inverse limits, this induces a

map ψ :
∏
p Zp → lim←− Z/(a).

By construction, the two maps are mutually inverse to each other. Hence, we have an isomorphism of
rings lim←− Z/(a) ∼=

∏
p Zp.

(III.18a) Denote the maps in the inverse system {Mn} by φMn : Mn →Mn−1. An element of lim←− Mn can be
written in the form (mn), mn ∈Mn such that φMn (mn) = mn−1 for all n. Likewise, we write (an) ∈ lim←− An,
φAn (an) = an−1. We can then define the product to be: (an)(mn) = (anmn). Then

φMn (anmn) = φAn (an)φMn (mn) = an−1mn−1

by the commutative diagram in the problem.

5



(III.18b) First, we give the definition of Tp(M). For each n ≥ 0, let Mn = M [pn] = {m ∈ M | pnm = 0}.
Then multiplication by p gives a map Mn →Mn−1 for each n. We define the group Tp(M) to be the inverse
limit of {Mn}.

For each n, since pnMn = 0 we can view Mn as a module over Z/pnZ. Now the following diagram is
commutative:

Z/pn+1Z × M [pn+1] −−−−→ M [pn+1]y yp yp
Z/pnZ × M [pn] −−−−→ M [pn]

and so by part (a), Tp(M) = lim←− Mn is a module over Zp = lim←− Z/pnZ.

(III.18c) Let P = M ⊕N and Mn, Nn, Pn be as above. The inclusion Mn ↪→ Pn for each n induces a map
Tp(M) → Tp(P ). Likewise, we have a map Tp(N) → Tp(P ). By the universal property of products (finite
direct sums are identical to finite direct products), we get a map Tp(M)⊕ Tp(N)→ Tp(P ).

Conversely, the projection maps P → M and P → N induce Tp(P ) → Tp(M) and Tp(P ) → Tp(N).
This then gives a map Tp(P ) → Tp(M) ⊕ Tp(N). It is clear from the construction that the two maps are
mutually inverse, so Tp(M)⊕ Tp(N) ∼= Tp(M ⊕N).

Additional Problems

(1) To prove the first claim about a, note that since α ∈ a, we have (α) ⊆ a. By Exercise (II.17a), the
ideal a divides (α) so a is a factor of (α). Hence we can write a as

∏t
i=1 pei

i , for some ei ≥ 0, ei ≤ fi.

Next, the existence of β follows from Chinese Remainder Theorem. To be specific, let xi ∈ pei
i − pei+1

i

for each i = 1, 2, . . . , t. Such an xi exists because the fractional ideals form a group, so if pei+1
i = pei

i , we can
multiply p−ei

i on both sides to obtain pi = o which is absurd. By Exercise (II.18), we can apply the Chinese
Remainder Theorem to the ideals pe11 , . . . , p

et
t . Hence there exists a β ∈ o such that β ≡ xi (mod pei+1

i ) for
i = 1, 2, . . . , t. Then β is divisible by all pei

i and no pei+1
i .

For such a β, we have (α, β) = (α) + (β) = gcd((α), (β)) by Exercise II.17b. But we know that the
prime factorizations of (α) and (β) are: (α) = pf11 pf22 . . . pft

t and (β) = pe11 pe22 . . . pet
t q

e′1
1 . . . q

e′r
r , where the

prime ideals pi and qj are all distinct. Since ei ≤ fi for each i, the gcd of (α) and (β) is pe11 . . . pet
t = a.

(2) The first step of the proof follows straight from page 113 of the textbook: every irreducible element of
a factorial ring is prime. But I’ll still give a proof here for completeness. Suppose π ∈ o is irreducible and
x, y ∈ o, xy ∈ (π). Hence after factoring xy as a product of irreducibles, π (or uπ for some unit u) must
occur among the irreducibles. So π must occur in the factorization of x or y, i.e. x ∈ (π) or y ∈ (π).

Next, suppose a ∈ o is any non-zero element. We can then write a as a product of irreducible elements∏
i π

ei
i . By the above paragraph, each irreducible element πi generates a prime ideal (πi). Hence, this

expresses the principal ideal (a) as a product
∏
i(πi)

ei , where each (πi) is a principal prime ideal.

For the last step, we know from (1) that a can be generated by two elements, i.e. a = (a, b). By the
previous paragraph, the principal ideal (a) (resp. (b)) can be written as a product of principal prime ideals∏t
i=1(πi)

ei (resp.
∏t
i=1(πi)

e′i), where each ei ≥ 0 (resp. e′i ≥ 0). Note that possibly some of the ei or e′i may

be 0. Then a is the gcd of (a) and (b) and a =
∏t
i=1(πi)

min(ei,e
′
i) =

(∏t
i=1 π

min(ei,e
′
i)

i

)
. Thus a is principal.

Since a can be any non-zero ideal of o, o must be principal.
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