
Math 250A, Fall 2004
Homework Assignment #7

Problems due October 26, 2004

Part I: Dedekind Rings.

As we have discussed on the comments page, most authors define a Dedekind ring (or
Dedekind domain) to be an integral domain that is Noetherian, of dimension 1 and inte-
grally closed in its fraction field. Being of dimension 1 means that the domain is not a field
and that non-zero prime ideals are maximal ideals. In homework #6, you showed that a
Dedekind ring à la Lang is Noetherian in Exercise 13 and showed that a Dedekind ring is
of dimension 1 in Exercise 18 (at the latest). It is understood in Exercises 13–19 that the
ring o is not a field; also, Lang has a tendency (or “convention,” as he refers to it) to omit
mentioning that ideals are non-zero. In the following additional problems, you will show
that a Dedekind ring à la Lang is integrally closed in its fraction field.

1. Let o be a Dedekind ring, and let K be the fraction field of o. Suppose that a is a fractional
ideal of o. Show that the set {x ∈ K |xa ⊆ o } coincides with the fractional ideal a−1.

Let I = {x ∈ K |xa ⊆ o }. Then I is clearly closed under addition and multiplication by
elements of o. It contains 0, so it’s non-empty. Thus it’s an o-submodule of K. If c is a
non-zero element of a, then cI ⊆ o; thus I is a fractional ideal. By definition, Ia ⊆ o; on
multiplying by a−1, we find I ⊆ a−1. Meanwhile, since a−1a ⊆ o, a−1 ⊆ I. Conclusion:
I = a−1.

2. Suppose now that O (upper-case “o”) is a subring of K that contains o and is finite
over o in the sense that O is a finitely generated o-module. (The action of o on O is by
multiplication inside O.) Show that O is a fractional ideal of o.

Each element of K has a denominator: if x ∈ K, then dx ∈ o for some d 6= 0, d ∈ o. Since
O is finitely generated, there is a non-zero d ∈ o such that dO ⊆ o. (Take the product of
denominators that work for the generators.) Also, O is an o-submodule of K because it’s
a ring that contains o. Hence O is a fractional ideal.

Let f be the fractional ideal O−1, so that

f = {x ∈ K |xO ⊆ o }.

Show that f is an integral ideal of o and in fact that f is even an integral ideal of O.

It is clear from the definition that f is stable under multiplication by elements of O. Since
it is the inverse of O and O contains o, it lies inside o−1 = o. Hence it is an ideal of o and
also an ideal of O. It is non-zero because it’s the inverse of a fractional ideal.

3. Using the inclusion fO ⊆ f, show that f = o and then that o = O. Thus o has the
maximality property that it is equal to O whenever O contains o and is finite over o.

Because f = O−1, fO = o. However, fO ⊆ f, so we have o ⊆ f, i.e., f = o. Thus O is the
inverse of o, so O = o.



4. Suppose that a ∈ K is integral over o in the sense that a satisfies an equation

an + cn−1a
n−1 + · · ·+ c0 = 0

with c0, c1, . . . , cn−1 ∈ o. Show that a ∈ o.

Let O be the smallest subring of K that contains o and a. This ring is finitely generated
over o. Indeed, it is generated by the set of all ai (i = 0, 1, 2, . . .), but an can be expressed as
an o-linear combination of lower powers of a, an+1 can be expressed in terms of a, a2, . . . , an,
and so on. We see that O is generated over o by 1, a, . . . , an−1, so that in particular it is
finitely generated. We see from the problems above that O = o. Thus a lies in o.

Part II: Fractional ideals in Dedekind rings are projective.

In the following problems, we let o be a Dedekind ring.

5. Suppose that a and b are integral ideals that are relatively prime. Show that the natural
map a ⊕ b → o, (x + y) 7→ x + y is surjective and that its kernel is ab. Prove that the
o-modules o⊕ ab and a⊕ b are isomorphic.

The map a ⊕ b → o, (x + y) 7→ x + y is surjective more or less by hypothesis: this is
one way of saying that a and b are relatively prime. The kernel of this map is the set of
(x, y) ∈ a⊕ b such that x = −y. This set is the set of all (t,−t) with t ∈ a∩ b. We have a
natural exact sequence

0 → a ∩ b → a⊕ b → o → 0,

where the map a ∩ b → a⊕ b sends t to (t,−t) and where the next map is the summation
map that we are discussing. Because o is a free o-module, the sequence splits, and we get
a ⊕ b ≈ o ⊕ a ∩ b. This is almost what is required, but we need to see why ab and a ∩ b
are the same thing.

The ideal ab clearly lies both in a and b, so it lies in their intersection. In the other
direction, suppose that t is in a ∩ b. Because a and b are relatively prime, we can find
x ∈ a and y ∈ b so that x + y = 1. Then t = xt + ty lies in ab.

6. Suppose now that a and b are fractional ideals of o. (We do not assume that they are
integral and we do not assume that they are relatively prime.) Prove that the two o-
modules o⊕ ab and a⊕ b are isomorphic.

The key point is that the isomorphism class of a fractional ideal does not change if we scale
the ideal by a non-zero element of K: multiplication by x maps a to xa, and an inverse for
this map is multiplication by x−1. We can thus assume that a and b are ordinary integral
ideals of o. Moreover, by Problem 19 from last week, we can assume that a and b are
relatively prime. In this case, the assertion to be proved is what we just did above.

7. If a is a fractional ideal, show that there is an o-module M so that a⊕M is a free o-module.
Conclude that a is a projective o-module.

In the above problem, let b = a−1. Then we see that a ⊕ a−1 is isomorphic to the free
module o⊕ o. Hence a is a direct summand of a free module. Accordingly, it is projective.
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Part III: one additional problem.

Do problem 7 on page 353, thus showing that rings that satisfy the standard Dedekind
properties have the defining property à la Lang.

a. We have to show that every non-zero ideal of o contains a product of primes (= non-
zero prime ideals). I understand in this problem that o is not a field, i.e., that o is smaller
than K. (If o = K, one could say that the three hypotheses are actually satisfied: there
are no non-zero prime ideals, so the hypothesis about non-zero prime ideals is vacuous.)
Then there are non-zero primes because (0) is not a maximal ideal and because there are
maximal ideals. So o does contain a product of prime ideals: if p is a prime, then o contains
p, which is a product with one factor. (We could also say that o contains o, which is the
product with zero factors.) Also, any prime p contains p, which is again a single-factor
product.

Because the ring is Noetherian, it is tempting to use “Noetherian induction” to do this
problem. Let S be the set of non-zero ideals of o that do not contain a product of prime
ideals. Assume that S is non-empty. Then S contains a maximal element; let a be such
an element. Our preliminary remarks show that a is a proper ideal of o and that it is not
a prime ideal. It follows that there are b, c ∈ o so that bc ∈ a but b and c are not in a. The
two ideals b = a + (b) and c = a + (c) are then larger than a (meaning that they contain
a but are not equal to a). One sees easily that their product is a. By maximality, b and
c each contain products of primes. By multiplying together two inclusions, we see that a
also contains a product of primes; this contradicts the fact that a is in S.

b. We are to show that every maximal ideal is invertible. I have to confess here that at this
point I pulled down off my shelf the van der Waerden book that is alluded to by Lang. This
is “Algebra, volume 2” by B. L. van der Waerden, published by Frederick Ungar in 1970.
The relevant discussion is in §17.4. Let p be a prime of o and let p−1 be defined as in the
statement of the problem. (This is the same set as in the first problem of this assignment.)
The ideal pp−1 is an integral ideal that contains p. If it is not o, then it must be p, since
p is maximal. Thus ab ∈ p for each a ∈ p and b ∈ p−1. Fix a non-zero element a of p, and
let b be in p−1. Then ab ∈ p, so ab2 ∈ p, and so on; we get that abi ∈ p for all i ≥ 0. It
will follow from this that b is integral; thus we have p−1 = o.

We first show, however, that the equation p−1 = o is impossible; this will give a contra-
diction. Take a ∈ p, a 6= 0. Then (c) contains a product of prime ideals, by part (a).
Specifically, suppose that p1 · · · pt is contained in (c); take t as small as possible in this
regard. (In other words, we take the shortest possible product of prime ideals that is con-
tained in (c).) Because p1 · · · pt is contained in p, one of the factors, p1, say, is contained
in p. Because primes are maximal, p1 and p are equal. Now the product p2 · · · pt cannot
be contained in (c) because t was supposed to be minimal. This means that there is some
x in p2 · · · pt that is not in (c). Because the full product p1 · · · pt is in (c), xp ⊆ (c) = co,
so that x/c ∈ p−1. Note finally that x/c is not in o because x is not in (c). Accordingly,
p−1 is bigger than o.

We now want to show that b ∈ o if there is a non-zero a ∈ o such that abi ∈ o for all i.
Consider the subring R = o[b] of K. This ring consists of all o-linear combinations of the
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powers bi of b. The product aR is an o-submodule of o, i.e., an ideal of o. Because o is
Noetherian, aR is finitely generated over o. Since multiplication by the non-zero element
a is an isomorphism of o-modules R

∼→ aR, R is finitely generated over o. This means
that b is integral over o; indeed, the finite generation of R over o is condition INT 2 on
page 334 of Lang. Because o is assumed to be integrally closed in K, b lies in o.

c. To show that every non-zero ideal of o is invertible, it now suffices to show that every
such ideal is a product of primes of o. This is what we do. More precisely, we prove by
induction on n: if a contains a product of n prime ideals, then a is invertible. By part (a),
every a contains some product of primes, so the inductive assertion covers what we need
to do. The case n = 0 corresponds to the case where a = o; here, I’d say that o is the
empty product of ideals. (If you don’t like that, just say that o is clearly invertible and
stick to proper ideals a.) If n = 1, then a contains a single prime p. Then a = p because
primes are maximal, and we are OK by part (b).

Let’s suppose that n is bigger than 1 and that a contains p1 · · · pn. Once again, if a = o,
there is nothing to show, so we can and do assume that a is proper. Then a is contained
in some maximal ideal m. Because m contains the product p1 · · · pn, it contains one of the
factors pi. As above, we can and will assume that i = 1. We have

mp2 · · · pn ⊆ a ⊆ m.

Multiply by m−1 to get
mp2 · · · pn ⊆ am−1 ⊆ o.

The ideal b := am−1 is thus an integral ideal that contains a product of n − 1 primes. It
is invertible by induction. Then m−1b−1 is an inverse for a = mb.
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