Math 250A, Fall 2001 Homework Assignment #6 Problems due October 19, 2004

Problems from Lang's book: Chapter II, Problems 13–19

Let's start by trying to figure out what we're talking about. It seems to me that the ring $\mathfrak{o} = K$ is actually an example of a Dedekind ring in Lang's definition. However, the usual definition of a Dedekind ring (also called a Dedekind domain) requires that the ring be of dimension 1; this means that (0) is a prime ideal but not a maximal ideal and that all non-zero prime ideals are maximal ideals. So I will assume $\mathfrak{o} \neq K$. The fractional ideals are subgroups of K of the form xI, where x is a non-zero element of K and I is a non-zero ideal of \mathfrak{o} . The product of two ideals I and J of \mathfrak{o} is the smallest ideal of \mathfrak{o} that contains all products ab with $a \in I$, $b \in J$. It consists of (finite) sums $\sum a_k b_k$ with $a_k \in I$ and $b_k \in J$.

13. Let \mathfrak{a} be a non-zero ideal of \mathfrak{o} and let \mathfrak{b} be the inverse of \mathfrak{a} in the group of fractional ideals of \mathfrak{o} . Then $\mathfrak{a}\mathfrak{b} = \mathfrak{o}$; note that \mathfrak{o} is the identity element of the group. Hence $1 \in \mathfrak{a}\mathfrak{b}$, so that $1 = \sum a_i b_i$, where $a_i \in \mathfrak{a}$, $b_i \in \mathfrak{b}$. For each $a \in \mathfrak{a}$, we have $a = \sum (ab_i)a_i$. Since $ab_i \in \mathfrak{o}$, it follows that a belongs to the ideal generated by the a_i .

14. Since we now know that every ideal of \mathfrak{o} , is finitely generated, \mathfrak{o} is a Noetherian ring. As we discussed in class on October 14, \mathfrak{o} satisfies the so-called ascending chain condition. This means that if we have ideals $\mathfrak{a}_1, \mathfrak{a}_2, \ldots$ with $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \ldots$, the chain stabilizes after some point: there's an N such that $\mathfrak{a}_n = \mathfrak{a}_N$ for all $n \geq N$. As we discussed in class, we may infer that every non-empty set of ideals of \mathfrak{o} has a maximal element (cf. the proof of Theorem 5.2 on page 112).

We prove first that all non-zero ideals of \mathfrak{o} are products of prime ideals. Needless to say, prime ideals can be so written (as a product with one factor). Also, it's a convention that the ring \mathfrak{o} itself can be so written—as the empty product! Consider the set S of ideals of \mathfrak{o} that cannot be written as a product of prime ideals. We want to see that the set is empty. (I am attempting to follow the argument in class that shows that elements in a PID are product of irreducible elements provided that they are non-zero and are not units.) Assume that S is non-empty and let \mathfrak{a} be a maximal element of S. Thus \mathfrak{a} cannot be written as a product of primes but that all ideals that strictly contain \mathfrak{a} may be written as products of primes. Note that \mathfrak{a} is a proper ideal because \mathfrak{o} is the empty product of primes. By Zorn's lemma, we may choose a maximal ideal \mathfrak{m} of \mathfrak{o} that contains \mathfrak{a} . We have $\mathfrak{a} = \mathfrak{m}(\mathfrak{m}^{-1}\mathfrak{a})$. Since $\mathfrak{m}^{-1}\mathfrak{a} \subseteq \mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{o}$, $\mathfrak{m}^{-1}\mathfrak{a}$ is an ideal of \mathfrak{o} . Because \mathfrak{m} is smaller than \mathfrak{o} , $\mathfrak{m}^{-1}\mathfrak{a}$ contains \mathfrak{a} but isn't equal to \mathfrak{a} . By the maximality of \mathfrak{a} as a counterexample, $\mathfrak{m}^{-1}\mathfrak{a}$ is a product of primes, say $\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_r$. Then $\mathfrak{a} = \mathfrak{m}\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_r$ is also a product of prime ideals.

Next, we show that non-zero prime ideals of \mathfrak{o} are maximal. (Note: this is Exercise 18, so we can skip #18 later on.) Suppose \mathfrak{p} is a non-zero prime and that we have $\mathfrak{p} \subseteq \mathfrak{a}$ with \mathfrak{a} an ideal of \mathfrak{o} . Then $\mathfrak{p} = \mathfrak{a}(\mathfrak{a}^{-1}\mathfrak{p})$, where the two factors \mathfrak{a} and $\mathfrak{a}^{-1}\mathfrak{p}$ are ideals of \mathfrak{o} . An important, but easy, fact about commutative rings is that if a prime ideal contains a

product \mathfrak{ab} of two ideals, then it contains at least one of the ideals. Indeed, suppose that \mathfrak{p} contains \mathfrak{ab} and does not contain \mathfrak{a} . Then there is an $a \in \mathfrak{a}$ with $a \notin \mathfrak{p}$. Since $ab \in \mathfrak{p}$ for each $b \in \mathfrak{b}$ and since \mathfrak{p} is prime, \mathfrak{p} contains all $b \in \mathfrak{b}$ and therefore contains \mathfrak{b} . Now our \mathfrak{p} is equal to the product $\mathfrak{a}(\mathfrak{a}^{-1}\mathfrak{p})$, so it must contain either \mathfrak{a} or $\mathfrak{a}^{-1}\mathfrak{p}$. The first alternative gives $\mathfrak{a} = \mathfrak{p}$ and the second gives $\mathfrak{a} = \mathfrak{o}$. Thus \mathfrak{p} is maximal.

To finish, we must prove the uniqueness of expressions of a non-zero ideal as a product of primes. Suppose that $\mathfrak{p}_1 \cdots \mathfrak{p}_r = \mathfrak{q}_1 \cdots \mathfrak{q}_s$, where the factors are all primes. The first factor \mathfrak{p}_1 divides (i.e., contains) the product $\mathfrak{q}_1 \cdots \mathfrak{q}_s$, so it must divide one of the factors, say q_1 . We have then $\mathfrak{p}_1 \supseteq \mathfrak{q}_1$; the maximality of \mathfrak{q}_1 gives the equality of \mathfrak{p}_1 and \mathfrak{q}_1 . The uniqueness that we need follows by the standard inductive argument.

15. Consider the prime factorization of (t). There's only one prime, so $(t) = \mathfrak{p}^n$ for some n. Since $(t) \subseteq \mathfrak{p}$ but (t) is not contained in \mathfrak{p}^2 , we must have n = 1.

A question that is suggested by this problem is whether or not there is a t in \mathfrak{p} but not in \mathfrak{p}^2 . If not, $\mathfrak{p} = \mathfrak{p}^2$. By Problem 13, \mathfrak{p} is generated by a finite number of elements, say a_1, \ldots, a_r . We take r as small as possible here. Note that r is positive because \mathfrak{p} is a non-zero prime ideal of \mathfrak{o} . We then have $\mathfrak{p} = \mathfrak{o}a_1 + \cdots + \mathfrak{o}a_r$, so that $\mathfrak{p} = \mathfrak{p}^2 = \mathfrak{p}a_1 + \cdots \mathfrak{p}a_r$. Since $a_r \in \mathfrak{p}$, a_r may be written as a sum $b_1a_1 + \cdots b_ra_r$ for some b_1, \ldots, b_r in \mathfrak{p} . Hence $\frac{r-1}{r}$

 $a_r(1-b_r) = \sum_{i=1}^{r-1} a_i b_i$. Now $1-b_r$ is not in \mathfrak{p} because b_r is in \mathfrak{p} while 1 is not in \mathfrak{p} . Since \mathfrak{p} is

the unique maximal ideal of \mathfrak{o} , $1 - b_r$ must be a unit of \mathfrak{o} . (The ideal $(1 - b_r)$ is contained in no maximal ideal and thus must be the unit ideal.) Hence a_r can be expressed as an \mathfrak{o} -linear combination of a_1, \ldots, a_{r-1} and is therefore a redundant generator of \mathfrak{p} . In other words, \mathfrak{p} can be generated by the r-1 elements a_1, \ldots, a_{r-1} ; this is contrary to the minimality of r. (See the discussion of Nakayama's Lemma, p. 424, for the origin of this argument.)

Added later: a simpler argument would have been to say that the equation $\mathfrak{p} = \mathfrak{p}^2$ contradicts the unique factorization of ideals into primes! So the Nakayama argument is not necessary.

16. If $\mathfrak{p} = 0$, then $\mathfrak{o}_{\mathfrak{p}} = K$, which I would prefer not to regard as a Dedekind ring. So let's take $\mathfrak{p} \neq 0$. The ring $\mathfrak{o}_{\mathfrak{p}}$ is a subring of K that is smaller than K. It has (0) as a prime ideal, but (0) is not maximal. As we proved above, once we see that $\mathfrak{o}_{\mathfrak{p}}$ is a Dedekind ring, we will know that all its non-zero primes are maximal. On the other hand, Exercise 3 shows that $\mathfrak{o}_{\mathfrak{p}}$ has exactly one maximal ideal. Hence $\mathfrak{o}_{\mathfrak{p}}$ has exactly one non-zero prime ideal if it's a Dedekind ring.

To show that $\mathfrak{o}_{\mathfrak{p}}$ is a Dedekind ring, it will be helpful to consult the bottom 2/5 of page 110, where we consider localizations A_S . Here's a general fact that could have been mentioned in this set-up. Namely, the map ψ_S sets up a 1-1 correspondence between ideals of A that are disjoint from S and the proper ideals of $S^{-1}A$. When S is the complement of a prime ideal \mathfrak{p} , an ideal of A is disjoint from S exactly when it's contained in \mathfrak{p} . When you localize A at \mathfrak{p} (i.e., when you take $S = A \setminus \mathfrak{p}$, you get a ring $A_{\mathfrak{p}}$ all of whose proper ideals are contained in $S^{-1}\mathfrak{p}$. The ideal $S^{-1}\mathfrak{p}$ is then the unique maximal ideal of $A_{\mathfrak{p}}$; this ring is local. Now we take $A = \mathfrak{o}$ and take S to be the complement in A of a non-zero prime ideal \mathfrak{p} . We need to check that ψ_S sets up a map from fractional ideals of A to fractional ideals of $S^{-1}A$. This map is compatible with multiplication. It's also surjective because a fractional ideal of $S^{-1}A$ is the product of a usual (integral) ideal of $S^{-1}A$ and an element of the field of fractions of A and because ψ_S is surjective on integral ideals. It follows that $S^{-1}A$ is a Dedekind domain: we can find an inverse for each fraction ideal of $S^{-1}A$. In sum, it's a Dedekind ring with a unique maximal ideal.

By the previous exercise (and my discussion showing that there is always a t as in the exercise), we see that the unique maximal ideal of $\mathfrak{o}_{\mathfrak{p}}$ is principal. It is generated by t whenever t lies in the localization of \mathfrak{p} but not in the square of the localization. Pick t, but note that t has the form x/y, where $y \in \mathfrak{o}$ is not in \mathfrak{p} and x is in \mathfrak{o} . Some reflection should convince you that x lies in \mathfrak{p} but not in \mathfrak{p}^2 . In other words, when we express (x) as a product of prime ideals, \mathfrak{p} occurs exactly once in the expression. For each $n \geq 0$, the ideal $(x^n) = (x)^n$ has \mathfrak{p}^n , but not \mathfrak{p}^{n+1} , in its prime factorization. We will use this remark in doing out Problem 19.

17. We are dealing with regular old non-zero ideals of \mathfrak{o} . If $\mathfrak{a}|\mathfrak{b}$, then $\mathfrak{b} = \mathfrak{a}\mathfrak{c}$, where \mathfrak{c} is an integral ideal of \mathfrak{o} . Then $\mathfrak{b} = \mathfrak{a}\mathfrak{c} \subseteq \mathfrak{a}$. Conversely, if $\mathfrak{b} \subseteq \mathfrak{a}$, then $\mathfrak{b} = (\mathfrak{a}\mathfrak{a}^{-1})\mathfrak{b}$ may be written $\mathfrak{a}\mathfrak{c}$, where \mathfrak{c} is the integral ideal $\mathfrak{a}^{-1}\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{a} = \mathfrak{o}$.

For part (b), we note that $\mathfrak{a} \subseteq \mathfrak{a} + \mathfrak{b}$ and $\mathfrak{b} \subseteq \mathfrak{a} + \mathfrak{b}$, so that $\mathfrak{a} + \mathfrak{b}$ divides both \mathfrak{a} and \mathfrak{b} (in the sense of this exercise). Conversely, if \mathfrak{c} divides both \mathfrak{a} and \mathfrak{b} , then it contains each of these ideals, so it contains (i.e., divides) their sum.

19. If \mathfrak{a} is a non-zero ideal of \mathfrak{o} and \mathfrak{p} is a prime of \mathfrak{o} (i.e., a non-zero prime ideal of \mathfrak{o}), let $\operatorname{ord}_{\mathfrak{p}}\mathfrak{a}$ be the exponent of \mathfrak{p} in the unique factorization of \mathfrak{a} as a product of prime ideals. If x is a non-zero element of \mathfrak{o} , write $\operatorname{ord}_{\mathfrak{p}} x$ for $\operatorname{ord}_{\mathfrak{p}}(x)$. It is easy to see that the two versions of "ord" extend uniquely to homomorphisms from the group of fractional ideals of \mathfrak{o} and the group K^* to the group of integers under addition. As we saw in the solution to Problem 16, for each $e \geq 0$ and each \mathfrak{p} , we can find an $x \in \mathfrak{o}$ such that $\operatorname{ord}_{\mathfrak{p}} x = e$. Next, if $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ are distinct primes, and if (e_1, \ldots, e_t) is a t-tuple of non-negative integers, then we can find $x \in \mathfrak{o}$ such that $\operatorname{ord}_{\mathfrak{p}_i} x = e_i$ for each $i = 1, \ldots, t$. This follows from the previous remark and the Chinese Remainder Theorem: for each i, we take x_i such that $\operatorname{ord}_{\mathfrak{p}_i} x_i = e_i$, and then we take a single $x \in \mathfrak{o}$ such that $x \equiv x_i \mod \mathfrak{p}_i^{e_i+1}$ for all i.

In the context of the problem, first find a $y \in \mathfrak{o}$ so that $\operatorname{ord}_{\mathfrak{p}} y = \operatorname{ord}_{\mathfrak{p}} \mathfrak{a}$ for all \mathfrak{p} dividing \mathfrak{a} . We then find an x such that

$$\operatorname{ord}_{\mathfrak{p}} x = \begin{cases} 0 & \text{for all } \mathfrak{p} | \mathfrak{a} \\ \operatorname{ord}_{p} y & \text{for all } \mathfrak{p} | (y), \mathfrak{p} \not| \mathfrak{a} \\ 0 & \text{for all } \mathfrak{p} | \mathfrak{b}, \mathfrak{p} \not| (y). \end{cases}$$

If I've done this right, the fractional ideal $\frac{x}{y}\mathfrak{a}$ is actually an integral ideal that is prime to \mathfrak{b} (and also to \mathfrak{a}).