Math 250A, Fall 2001
Homework Assignment #6
Problems due October 19, 2004

Problems from Lang’s book: Chapter II, Problems 13-19

Let’s start by trying to figure out what we’re talking about. It seems to me that the ring
0o = K is actually an example of a Dedekind ring in Lang’s definition. However, the usual
definition of a Dedekind ring (also called a Dedekind domain) requires that the ring be
of dimension 1; this means that (0) is a prime ideal but not a maximal ideal and that all
non-zero prime ideals are maximal ideals. So I will assume 0 # K. The fractional ideals
are subgroups of K of the form zI, where z is a non-zero element of K and [ is a non-zero
ideal of 0. The product of two ideals I and J of o0 is the smallest ideal of o that contains
all products ab with a € I, b € J. It consists of (finite) sums Zakbk with a;, € I and
b, € J.

13. Let a be a non-zero ideal of 0 and let b be the inverse of a in the group of fractional
ideals of 0. Then ab = o; note that o is the identity element of the group. Hence 1 € ab,
so that 1 = Zaibi, where a; € a, b; € b. For each a € a, we have a = Z(abi)ai. Since
ab; € o, it follows that a belongs to the ideal generated by the a;.

14. Since we now know that every ideal of o, is finitely generated, o is a Noetherian ring.
As we discussed in class on October 14, o satisfies the so-called ascending chain condition.
This means that if we have ideals a1, as,... with a; C as C ag C ..., the chain stabilizes
after some point: there’s an N such that a, = ay for all n > N. As we discussed in class,
we may infer that every non-empty set of ideals of o has a maximal element (cf. the proof
of Theorem 5.2 on page 112).

We prove first that all non-zero ideals of o are products of prime ideals. Needless to say,
prime ideals can be so written (as a product with one factor). Also, it’s a convention that
the ring o itself can be so written—as the empty product! Consider the set S of ideals
of o that cannot be written as a product of prime ideals. We want to see that the set
is empty. (I am attempting to follow the argument in class that shows that elements in
a PID are product of irreducible elements provided that they are non-zero and are not
units.) Assume that S is non-empty and let a be a maximal element of S. Thus a cannot
be written as a product of primes but that all ideals that strictly contain a may be written
as products of primes. Note that a is a proper ideal because o is the empty product of
primes. By Zorn’s lemma, we may choose a maximal ideal m of o that contains a. We
have a = m(m_la). Since m'a C m™'m = o, m'a is an ideal of 0. Because m is smaller
than o, m~'a contains a but isn’t equal to a. By the maximality of a as a counterexample,
m~1a is a product of primes, say pips---p,. Then a = mpps---p, is also a product of
prime ideals.

Next, we show that non-zero prime ideals of o are maximal. (Note: this is Exercise 18,
so we can skip #18 later on.) Suppose p is a non-zero prime and that we have p C a
with a an ideal of 0. Then p = a(a™'p), where the two factors a and a~'p are ideals of o.
An important, but easy, fact about commutative rings is that if a prime ideal contains a



product ab of two ideals, then it contains at least one of the ideals. Indeed, suppose that
p contains ab and does not contain a. Then there is an a € a with a &€ p. Since ab € p for
each b € b and since p is prime, p contains all b € b and therefore contains b. Now our p
is equal to the product a(a™!'p), so it must contain either a or a~'p. The first alternative
gives a = p and the second gives a = 0. Thus p is maximal.

To finish, we must prove the uniqueness of expressions of a non-zero ideal as a product
of primes. Suppose that p;---p,. = q1---qs, where the factors are all primes. The first
factor p; divides (i.e., contains) the product q; - - - qs, so it must divide one of the factors,
say q1. We have then p; O q1; the maximality of q; gives the equality of p; and q;. The
uniqueness that we need follows by the standard inductive argument.

15. Consider the prime factorization of (t). There’s only one prime, so (t) = p” for some n.
Since (t) C p but (¢) is not contained in p?, we must have n = 1.

A question that is suggested by this problem is whether or not there is a ¢ in p but not
in p2. If not, p = p2. By Problem 13, p is generated by a finite number of elements, say

ai,...,ar. We take r as small as possible here. Note that r is positive because p is a

non-zero prime ideal of 0. We then have p = oa; +- - - +0a,., so that p = p? = pa; + - - - pa,.

Since a, € p, a, may be written as a sum byay + - - - b.a, for some by,...,b. in p. Hence
r—1

ar-(1—5,) = Z a;b;. Now 1 —b, is not in p because b, is in p while 1 is not in p. Since p is
i=1

the unique maximal ideal of 0, 1 — b, must be a unit of 0. (The ideal (1 — b,) is contained
in no maximal ideal and thus must be the unit ideal.) Hence a, can be expressed as
an o-linear combination of aq,...,a,_1 and is therefore a redundant generator of p. In
other words, p can be generated by the r — 1 elements a4, ..., a,_1; this is contrary to the
minimality of r. (See the discussion of Nakayama’s Lemma, p. 424, for the origin of this
argument. )

Added later: a simpler argument would have been to say that the equation p = p? con-
tradicts the unique factorization of ideals into primes! So the Nakayama argument is not
necessary.

16. If p = 0, then o, = K, which I would prefer not to regard as a Dedekind ring. So let’s
take p # 0. The ring o, is a subring of K that is smaller than K. It has (0) as a prime
ideal, but (0) is not maximal. As we proved above, once we see that o, is a Dedekind ring,
we will know that all its non-zero primes are maximal. On the other hand, Exercise 3
shows that o, has exactly one maximal ideal. Hence o, has exactly one non-zero prime
ideal if it’s a Dedekind ring.

To show that o, is a Dedekind ring, it will be helpful to consult the bottom 2/5 of page 110,
where we consider localizations Ag. Here’s a general fact that could have been mentioned
in this set-up. Namely, the map g sets up a 1-1 correspondence between ideals of A that
are disjoint from S and the proper ideals of S~ A. When S is the complement of a prime
ideal p, an ideal of A is disjoint from S exactly when it’s contained in p. When you localize
A at p (i.e., when you take S = A\ p, you get a ring A, all of whose proper ideals are
contained in S™'p. The ideal S™!'p is then the unique maximal ideal of Ap; this ring is
local.



Now we take A = o0 and take S to be the complement in A of a non-zero prime ideal p. We
need to check that 1 g sets up a map from fractional ideals of A to fractional ideals of S™*A.
This map is compatible with multiplication. It’s also surjective because a fractional ideal
of S71A is the product of a usual (integral) ideal of S 14 and an element of the field of
fractions of A and because g is surjective on integral ideals. It follows that S™'A is a
Dedekind domain: we can find an inverse for each fraction ideal of S™1A. In sum, it’s a
Dedekind ring with a unique maximal ideal.

By the previous exercise (and my discussion showing that there is always a ¢ as in the
exercise), we see that the unique maximal ideal of o, is principal. It is generated by t
whenever t lies in the localization of p but not in the square of the localization. Pick t,
but note that ¢ has the form z/y, where y € o is not in p and z is in 0. Some reflection
should convince you that z lies in p but not in p?. In other words, when we express (x)
as a product of prime ideals, p occurs exactly once in the expression. For each n > 0, the
ideal (™) = ()™ has p”, but not p" ™, in its prime factorization. We will use this remark
in doing out Problem 19.

17. We are dealing with regular old non-zero ideals of o. If a|b, then b = ac, where ¢ is
an integral ideal of 0. Then b = ac C a. Conversely, if b C a, then b = (aa_l)b may be
written ac, where ¢ is the integral ideal a'bCala=o.

For part (b), we note that a C a+ b and b C a+ b, so that a + b divides both a and b (in
the sense of this exercise). Conversely, if ¢ divides both a and b, then it contains each of
these ideals, so it contains (i.e., divides) their sum.

19. If a is a non-zero ideal of 0 and p is a prime of o (i.e., a non-zero prime ideal of 0), let
ord, a be the exponent of p in the unique factorization of a as a product of prime ideals.
If  is a non-zero element of o, write ord, z for ord,(z). It is easy to see that the two
versions of “ord” extend uniquely to homomorphisms from the group of fractional ideals
of 0 and the group K* to the group of integers under addition. As we saw in the solution
to Problem 16, for each e > 0 and each p, we can find an = € o such that ord, x = e. Next,
if p1,...,p; are distinct primes, and if (e1,...,e;) is a t-tuple of non-negative integers,
then we can find x € o such that ord,, x = e; for each ¢ = 1,...,¢. This follows from the
previous remark and the Chinese Remainder Theorem: for each ¢, we take x; such that
ordy, z; = e;, and then we take a single x € o such that = z; mod pf”’l for all 1.

In the context of the problem, first find a y € o so that ord, y = ord, a for all p dividing
a. We then find an x such that

0 for all p|a
ordyx = ¢ ord,y for all p|(y),p fa
0 for all p|b,p (v).

If I’'ve done this right, the fractional ideal zCL is actually an integral ideal that is prime
Yy
to b (and also to a).



