
Math 250A, Fall 2001
Homework Assignment #6

Problems due October 19, 2004

Problems from Lang’s book: Chapter II, Problems 13–19

Let’s start by trying to figure out what we’re talking about. It seems to me that the ring
o = K is actually an example of a Dedekind ring in Lang’s definition. However, the usual
definition of a Dedekind ring (also called a Dedekind domain) requires that the ring be
of dimension 1; this means that (0) is a prime ideal but not a maximal ideal and that all
non-zero prime ideals are maximal ideals. So I will assume o 6= K. The fractional ideals
are subgroups of K of the form xI, where x is a non-zero element of K and I is a non-zero
ideal of o. The product of two ideals I and J of o is the smallest ideal of o that contains
all products ab with a ∈ I, b ∈ J . It consists of (finite) sums

∑
akbk with ak ∈ I and

bk ∈ J .

13. Let a be a non-zero ideal of o and let b be the inverse of a in the group of fractional
ideals of o. Then ab = o; note that o is the identity element of the group. Hence 1 ∈ ab,
so that 1 =

∑
aibi, where ai ∈ a, bi ∈ b. For each a ∈ a, we have a =

∑
(abi)ai. Since

abi ∈ o, it follows that a belongs to the ideal generated by the ai.

14. Since we now know that every ideal of o, is finitely generated, o is a Noetherian ring.
As we discussed in class on October 14, o satisfies the so-called ascending chain condition.
This means that if we have ideals a1, a2, . . . with a1 ⊆ a2 ⊆ a3 ⊆ . . ., the chain stabilizes
after some point: there’s an N such that an = aN for all n ≥ N . As we discussed in class,
we may infer that every non-empty set of ideals of o has a maximal element (cf. the proof
of Theorem 5.2 on page 112).

We prove first that all non-zero ideals of o are products of prime ideals. Needless to say,
prime ideals can be so written (as a product with one factor). Also, it’s a convention that
the ring o itself can be so written—as the empty product! Consider the set S of ideals
of o that cannot be written as a product of prime ideals. We want to see that the set
is empty. (I am attempting to follow the argument in class that shows that elements in
a PID are product of irreducible elements provided that they are non-zero and are not
units.) Assume that S is non-empty and let a be a maximal element of S. Thus a cannot
be written as a product of primes but that all ideals that strictly contain a may be written
as products of primes. Note that a is a proper ideal because o is the empty product of
primes. By Zorn’s lemma, we may choose a maximal ideal m of o that contains a. We
have a = m(m−1a). Since m−1a ⊆ m−1m = o, m−1a is an ideal of o. Because m is smaller
than o, m−1a contains a but isn’t equal to a. By the maximality of a as a counterexample,
m−1a is a product of primes, say p1p2 · · · pr. Then a = mp1p2 · · · pr is also a product of
prime ideals.

Next, we show that non-zero prime ideals of o are maximal. (Note: this is Exercise 18,
so we can skip #18 later on.) Suppose p is a non-zero prime and that we have p ⊆ a
with a an ideal of o. Then p = a(a−1p), where the two factors a and a−1p are ideals of o.
An important, but easy, fact about commutative rings is that if a prime ideal contains a



product ab of two ideals, then it contains at least one of the ideals. Indeed, suppose that
p contains ab and does not contain a. Then there is an a ∈ a with a 6∈ p. Since ab ∈ p for
each b ∈ b and since p is prime, p contains all b ∈ b and therefore contains b. Now our p
is equal to the product a(a−1p), so it must contain either a or a−1p. The first alternative
gives a = p and the second gives a = o. Thus p is maximal.

To finish, we must prove the uniqueness of expressions of a non-zero ideal as a product
of primes. Suppose that p1 · · · pr = q1 · · · qs, where the factors are all primes. The first
factor p1 divides (i.e., contains) the product q1 · · · qs, so it must divide one of the factors,
say q1. We have then p1 ⊇ q1; the maximality of q1 gives the equality of p1 and q1. The
uniqueness that we need follows by the standard inductive argument.

15. Consider the prime factorization of (t). There’s only one prime, so (t) = pn for some n.
Since (t) ⊆ p but (t) is not contained in p2, we must have n = 1.

A question that is suggested by this problem is whether or not there is a t in p but not
in p2. If not, p = p2. By Problem 13, p is generated by a finite number of elements, say
a1, . . . , ar. We take r as small as possible here. Note that r is positive because p is a
non-zero prime ideal of o. We then have p = oa1 + · · ·+oar, so that p = p2 = pa1 + · · · par.
Since ar ∈ p, ar may be written as a sum b1a1 + · · · brar for some b1, . . . , br in p. Hence

ar(1− br) =
r−1∑
i=1

aibi. Now 1− br is not in p because br is in p while 1 is not in p. Since p is

the unique maximal ideal of o, 1− br must be a unit of o. (The ideal (1− br) is contained
in no maximal ideal and thus must be the unit ideal.) Hence ar can be expressed as
an o-linear combination of a1, . . . , ar−1 and is therefore a redundant generator of p. In
other words, p can be generated by the r− 1 elements a1, . . . , ar−1; this is contrary to the
minimality of r. (See the discussion of Nakayama’s Lemma, p. 424, for the origin of this
argument.)

Added later: a simpler argument would have been to say that the equation p = p2 con-
tradicts the unique factorization of ideals into primes! So the Nakayama argument is not
necessary.

16. If p = 0, then op = K, which I would prefer not to regard as a Dedekind ring. So let’s
take p 6= 0. The ring op is a subring of K that is smaller than K. It has (0) as a prime
ideal, but (0) is not maximal. As we proved above, once we see that op is a Dedekind ring,
we will know that all its non-zero primes are maximal. On the other hand, Exercise 3
shows that op has exactly one maximal ideal. Hence op has exactly one non-zero prime
ideal if it’s a Dedekind ring.

To show that op is a Dedekind ring, it will be helpful to consult the bottom 2/5 of page 110,
where we consider localizations AS . Here’s a general fact that could have been mentioned
in this set-up. Namely, the map ψS sets up a 1-1 correspondence between ideals of A that
are disjoint from S and the proper ideals of S−1A. When S is the complement of a prime
ideal p, an ideal of A is disjoint from S exactly when it’s contained in p. When you localize
A at p (i.e., when you take S = A \ p, you get a ring Ap all of whose proper ideals are
contained in S−1p. The ideal S−1p is then the unique maximal ideal of Ap; this ring is
local.
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Now we take A = o and take S to be the complement in A of a non-zero prime ideal p. We
need to check that ψS sets up a map from fractional ideals of A to fractional ideals of S−1A.
This map is compatible with multiplication. It’s also surjective because a fractional ideal
of S−1A is the product of a usual (integral) ideal of S−1A and an element of the field of
fractions of A and because ψS is surjective on integral ideals. It follows that S−1A is a
Dedekind domain: we can find an inverse for each fraction ideal of S−1A. In sum, it’s a
Dedekind ring with a unique maximal ideal.

By the previous exercise (and my discussion showing that there is always a t as in the
exercise), we see that the unique maximal ideal of op is principal. It is generated by t
whenever t lies in the localization of p but not in the square of the localization. Pick t,
but note that t has the form x/y, where y ∈ o is not in p and x is in o. Some reflection
should convince you that x lies in p but not in p2. In other words, when we express (x)
as a product of prime ideals, p occurs exactly once in the expression. For each n ≥ 0, the
ideal (xn) = (x)n has pn, but not pn+1, in its prime factorization. We will use this remark
in doing out Problem 19.

17. We are dealing with regular old non-zero ideals of o. If a|b, then b = ac, where c is
an integral ideal of o. Then b = ac ⊆ a. Conversely, if b ⊆ a, then b = (aa−1)b may be
written ac, where c is the integral ideal a−1b ⊆ a−1a = o.

For part (b), we note that a ⊆ a + b and b ⊆ a + b, so that a + b divides both a and b (in
the sense of this exercise). Conversely, if c divides both a and b, then it contains each of
these ideals, so it contains (i.e., divides) their sum.

19. If a is a non-zero ideal of o and p is a prime of o (i.e., a non-zero prime ideal of o), let
ordp a be the exponent of p in the unique factorization of a as a product of prime ideals.
If x is a non-zero element of o, write ordp x for ordp(x). It is easy to see that the two
versions of “ord” extend uniquely to homomorphisms from the group of fractional ideals
of o and the group K∗ to the group of integers under addition. As we saw in the solution
to Problem 16, for each e ≥ 0 and each p, we can find an x ∈ o such that ordp x = e. Next,
if p1, . . . , pt are distinct primes, and if (e1, . . . , et) is a t-tuple of non-negative integers,
then we can find x ∈ o such that ordpi

x = ei for each i = 1, . . . , t. This follows from the
previous remark and the Chinese Remainder Theorem: for each i, we take xi such that
ordpi

xi = ei, and then we take a single x ∈ o such that x ≡ xi mod pei+1
i for all i.

In the context of the problem, first find a y ∈ o so that ordp y = ordp a for all p dividing
a. We then find an x such that

ordp x =

 0 for all p|a
ordp y for all p|(y), p 6 |a
0 for all p|b, p 6 |(y).

If I’ve done this right, the fractional ideal
x

y
a is actually an integral ideal that is prime

to b (and also to a).
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