Math 250A
Solutions to Homework 5

(I1.1) Write X for the set of ideals of A which do not intersect S. We know that p is a maximal element in
this set. Suppose p is not prime, so that we can find z,y € A —p, xy € p. Since x € A — p, the ideal p + Az
properly contains p. But p is a maximal element in 2. So p+ Az & X, which means SN (p+ Az) # (. Thus,
there exist elements r € p, s € A such that r + sz € S. Similarly, SN (p + Ay) # 0 so there exist elements
r" € p, s € A such that ' + s’y € S. So the product

ss' = (r+sz)(r' +s'y) =rr' +rs'y +r'sx + ss’xy € S.

But zy,r, 7’ € p. Hence, ss’ € SN p, which contradicts the assumption that p € X. Thus p must be prime.

(I1.2) We first note that a commutative ring R # 0 is local iff the set of nonunits of R form an ideal. For
=, suppose R is local with maximal ideal m. If z € R is not a unit, then (z) C R is a proper ideal and so
must be contained in the maximal ideal m. For <, let a be the ideal of nonunits of R. Then any proper
ideal b C R cannot contain any units, and hence must be contained in a. This shows that a is the unique
maximal ideal of R.

Now let A be a local ring with maximal ideal m. Since f : A — A’ is a surjective ring homomorphism, f(m)
is an ideal of A’ [Indeed, if v’ € A, we may pick r € A such that f(r) =r'. Then r'f(m) = f(rm) C f(m)
and so f(m) C A’ is an ideal.] If s € A’ — f(m), then s’ = f(s) for some s € A. Since f(s) € f(m), s¢gm
and so s € A is a unit. This shows that s’ = f(s) € A’ is a unit. By the above observation, we see that A’
is a local ring.

(I1.3) By the note in the first paragraph of (II.2), it suffices to show that A, — {2 | a € p,s & p} consists
of solely units of A,. But this is clear: take any element of this set and write it in the form £ € A,. Then
r & p, ¢ p. By definition of Ay, & is also an element of A, and % - & = 1. So we see that A, is local.
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(I1.4) First, let us prove a useful result.

Write ¢ : A — S~'A for the canonical map a +— 7. Now for any ideal b C S~1A, the pullback ¢~1(b)

gives an ideal of A. On the other hand, for any ideal a C A, S~!a gives an ideal of S™1A. We claim that

x

composing gives S~1(¢~1(b)) = b. Indeed C is easy: since for any z € ¢~1(b), we have T € b so that
2= % -7 € b for any s € S. Conversely for O, any element of b can be written in the form %,z € 4, s € S.

Then £ =s-Z € bandsox € ¢ '(b). Hence, £ =1 .2€ 571 (¢71(b)).
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Now to prove that S~!A is principal, let b € S~!A be an ideal. By the previous paragraph, b = S~'a for
some ideal a C A. Since A is principal, a = A-z for some x € A. Then b = S~ la = S’lA% is also principal.

(I1.5) We first claim that for any ring A, the prime ideals of S~'A are in bijection with the prime ideals
of A which do not intersect S, with the correspondence given in the first paragraph of (IL.1). [ Note: by
convention, prime ideals exclude the ring itself A. |

We have already proven, in (IL.1), that the correspondence takes ideals of S™!1A back to itself (I'll leave
to the reader to check that if p is a prime not intersecting S, S~'p is prime too). Conversely, suppose p is
a prime ideal of A such that pN S = (). We have to show that ¢=1(S~1p) = p, where ¢ : A — S~1A is the
canonical map a — ¢. Now D is easy. For the reverse inclusion, suppose a € A such that ¢(a) = § € Sy,
We can write § = ‘S‘—,/ where a’ € p, s € S. Then there exists a t € S such that t(as’ —a’) = 0. Since o’ € p,
as't € p as well. But p is prime and s't € S. Since S does not intersect p, we have a € p.

Immediately this implies one direction of the second statement: if p € A is prime and (p) NS = (), then ¥



generates a prime ideal of S~'A and is hence prime.

Now we show S~'A is factorial. Let ces ~1A. Since A is factorial, we can factorize a as a product
of prime elements (unique up to multiplication by units). Now for each such prime element p, consider its
image ¥ € STIA. If (p)NS =0, 2 is prime. Otherwise, zp € S for some multiple of p so 1% = x-é liesin S~1A
and £ is a unit. Collecting the units, we have written ¢ as a product of prime elements of S ~1 A of the form k.
Note: Such a product is unique. In fact in any entire ring A, if ¢ € A — {0} can be written as a product of
prime elements, then such an expression is unique, up to permutation of prime elements, and multiplication
by units. Indeed, if P =p1...py = qu,...qs for some prime elements p;, q;, then since [[p; € (q1), one of
the p; must be in (q1). Since (p;) is a prime ideal, we in fact must have (p;) = (q1) so that p; = uqy for
some unit u. Now we divide the left by p; and the right by q1 and do this iteratively.

Hence, every element of S~'A can be uniquely factorized as a product of a unit, and primes of the form e

(where p € A is prime and (p) NS = )). In particular, this also shows that the only prime elements of S~1A
are of the form ¥ (up to multiplication by a unit).

(I1.6) Recall that by definition A" = A, consists of all ¢, a € A, s € (p). By (IL5), we know that A" = A,
is factorial. Furthermore, its unique maximal ideal is generated by . Replacing A by A’, we may assume
that A is a factorial, local ring, with maximal ideal generated by some p € A. We need to show it is principal.

Now A has no prime elements other than p (and up for a unit u). For if z € A — {0} is prime, then x
is not a unit, so by the first paragraph of (IL.2), € (p). Since z is prime, (z) = (p), so that x = up for
some unit u. Hence, every z € A — {0} can be uniquely written as up”, for some unit v and r > 0. We call
r the valuation of z, written as v(x).

Let a C A be a nonzero ideal, and m = min{v(z) | z € a — {0}}. So some z € a has valuation m, i.e.
x = up™ for some unit u. Then (z) C a. Conversely, for any y € a — {0}, its valuation n = v(y) > m so we

can write y = u/p™ for some unit u’. Hence y = %p"‘mx € (x). So a is indeed principal.

(IL.7) We have (a1, az,...,a,) = (d). We wish to show that d is a greatest common divisor of the a;’s, i.e.
d divides each a;; and if d’ is any other element dividing each a;, then d’|d. The first statement follows
immediately: since (a;) C (a1,...,a,) = (d), a; € (d) and hence qa; is a multiple of d for each i.

On the other hand, suppose d’ divides a; for each i. Then a; € (d'). Since ay,...,a, € (d’), the ideal
they generate (as,...,ay) lies in (d'). Hence (d) C (d') = d € (d'), and hence d is a multiple of d'.



