
Math 250A
Solutions to Homework 5

(II.1) Write Σ for the set of ideals of A which do not intersect S. We know that p is a maximal element in
this set. Suppose p is not prime, so that we can find x, y ∈ A− p, xy ∈ p. Since x ∈ A− p, the ideal p + Ax
properly contains p. But p is a maximal element in Σ. So p+Ax 6∈ Σ, which means S ∩ (p+Ax) 6= ∅. Thus,
there exist elements r ∈ p, s ∈ A such that r + sx ∈ S. Similarly, S ∩ (p + Ay) 6= ∅ so there exist elements
r′ ∈ p, s′ ∈ A such that r′ + s′y ∈ S. So the product

ss′ = (r + sx)(r′ + s′y) = rr′ + rs′y + r′sx + ss′xy ∈ S.

But xy, r, r′ ∈ p. Hence, ss′ ∈ S ∩ p, which contradicts the assumption that p ∈ Σ. Thus p must be prime.

(II.2) We first note that a commutative ring R 6= 0 is local iff the set of nonunits of R form an ideal. For
⇒, suppose R is local with maximal ideal m. If x ∈ R is not a unit, then (x) ( R is a proper ideal and so
must be contained in the maximal ideal m. For ⇐, let a be the ideal of nonunits of R. Then any proper
ideal b ( R cannot contain any units, and hence must be contained in a. This shows that a is the unique
maximal ideal of R.

Now let A be a local ring with maximal ideal m. Since f : A → A′ is a surjective ring homomorphism, f(m)
is an ideal of A′ [Indeed, if r′ ∈ A′, we may pick r ∈ A such that f(r) = r′. Then r′f(m) = f(rm) ⊆ f(m)
and so f(m) ⊆ A′ is an ideal.] If s′ ∈ A′ − f(m), then s′ = f(s) for some s ∈ A. Since f(s) 6∈ f(m), s 6∈ m
and so s ∈ A is a unit. This shows that s′ = f(s) ∈ A′ is a unit. By the above observation, we see that A′

is a local ring.

(II.3) By the note in the first paragraph of (II.2), it suffices to show that Ap − {a
s | a ∈ p, s 6∈ p} consists

of solely units of Ap. But this is clear: take any element of this set and write it in the form r
s ∈ Ap. Then

r 6∈ p, 6∈ p. By definition of Ap, s
r is also an element of Ap, and r

s ·
s
r = 1. So we see that Ap is local.

(II.4) First, let us prove a useful result.

Write φ : A → S−1A for the canonical map a 7→ a
1 . Now for any ideal b ⊆ S−1A, the pullback φ−1(b)

gives an ideal of A. On the other hand, for any ideal a ⊆ A, S−1a gives an ideal of S−1A. We claim that
composing gives S−1(φ−1(b)) = b. Indeed ⊆ is easy: since for any x ∈ φ−1(b), we have x

1 ∈ b so that
x
s = 1

s ·
x
1 ∈ b for any s ∈ S. Conversely for ⊇, any element of b can be written in the form x

s , x ∈ A, s ∈ S.
Then x

1 = s · x
s ∈ b and so x ∈ φ−1(b). Hence, x

s = 1
s · x ∈ S−1(φ−1(b)).

Now to prove that S−1A is principal, let b ⊆ S−1A be an ideal. By the previous paragraph, b = S−1a for
some ideal a ⊆ A. Since A is principal, a = A ·x for some x ∈ A. Then b = S−1a = S−1A · x

1 is also principal.

(II.5) We first claim that for any ring A, the prime ideals of S−1A are in bijection with the prime ideals
of A which do not intersect S, with the correspondence given in the first paragraph of (II.1). [ Note: by
convention, prime ideals exclude the ring itself A. ]

We have already proven, in (II.1), that the correspondence takes ideals of S−1A back to itself (I’ll leave
to the reader to check that if p is a prime not intersecting S, S−1p is prime too). Conversely, suppose p is
a prime ideal of A such that p ∩ S = ∅. We have to show that φ−1(S−1p) = p, where φ : A → S−1A is the
canonical map a 7→ a

1 . Now ⊇ is easy. For the reverse inclusion, suppose a ∈ A such that φ(a) = a
1 ∈ S−1p.

We can write a
1 = a′

s′ where a′ ∈ p, s′ ∈ S. Then there exists a t ∈ S such that t(as′ − a′) = 0. Since a′ ∈ p,
as′t ∈ p as well. But p is prime and s′t ∈ S. Since S does not intersect p, we have a ∈ p.

Immediately this implies one direction of the second statement: if p ∈ A is prime and (p) ∩ S = ∅, then p
1
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generates a prime ideal of S−1A and is hence prime.

Now we show S−1A is factorial. Let a
s ∈ S−1A. Since A is factorial, we can factorize a as a product

of prime elements (unique up to multiplication by units). Now for each such prime element p, consider its
image p

1 ∈ S−1A. If (p)∩S = ∅, p
1 is prime. Otherwise, xp ∈ S for some multiple of p so 1

p = x· 1
xp lies in S−1A

and p
1 is a unit. Collecting the units, we have written a

s as a product of prime elements of S−1A of the form p
1 .

Note: Such a product is unique. In fact in any entire ring A, if x ∈ A− {0} can be written as a product of
prime elements, then such an expression is unique, up to permutation of prime elements, and multiplication
by units. Indeed, if P = p1 . . . pr = q1, . . . qs for some prime elements pi, qj, then since

∏
pi ∈ (q1), one of

the pi must be in (q1). Since (pi) is a prime ideal, we in fact must have (pi) = (q1) so that pi = uq1 for
some unit u. Now we divide the left by pi and the right by q1 and do this iteratively.

Hence, every element of S−1A can be uniquely factorized as a product of a unit, and primes of the form p
1

(where p ∈ A is prime and (p)∩S = ∅). In particular, this also shows that the only prime elements of S−1A
are of the form p

1 (up to multiplication by a unit).

(II.6) Recall that by definition A′ = A(p) consists of all a
s , a ∈ A, s 6∈ (p). By (II.5), we know that A′ = A(p)

is factorial. Furthermore, its unique maximal ideal is generated by p
1 . Replacing A by A′, we may assume

that A is a factorial, local ring, with maximal ideal generated by some p ∈ A. We need to show it is principal.

Now A has no prime elements other than p (and up for a unit u). For if x ∈ A − {0} is prime, then x
is not a unit, so by the first paragraph of (II.2), x ∈ (p). Since x is prime, (x) = (p), so that x = up for
some unit u. Hence, every x ∈ A− {0} can be uniquely written as upr, for some unit u and r ≥ 0. We call
r the valuation of x, written as v(x).

Let a ⊂ A be a nonzero ideal, and m = min{v(x) | x ∈ a − {0}}. So some x ∈ a has valuation m, i.e.
x = upm for some unit u. Then (x) ⊆ a. Conversely, for any y ∈ a− {0}, its valuation n = v(y) ≥ m so we
can write y = u′pn for some unit u′. Hence y = u′

u pn−mx ∈ (x). So a is indeed principal.

(II.7) We have (a1, a2, . . . , an) = (d). We wish to show that d is a greatest common divisor of the ai’s, i.e.
d divides each ai; and if d′ is any other element dividing each ai, then d′|d. The first statement follows
immediately: since (ai) ⊆ (a1, . . . , an) = (d), ai ∈ (d) and hence ai is a multiple of d for each i.

On the other hand, suppose d′ divides ai for each i. Then ai ∈ (d′). Since a1, . . . , an ∈ (d′), the ideal
they generate (a1, . . . , an) lies in (d′). Hence (d) ⊆ (d′) =⇒ d ∈ (d′), and hence d is a multiple of d′.
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