
Math 250A, Fall 2004
Problems due October 5, 2004

The problems this week were from Lang’s “Algebra, Chapter I.”

24. We basically know already that groups of order p2 are abelian. Indeed, p-groups have non-trivial
centers, and a group mod its center can be cyclic only if the group is abelian. Let G be a group
of order p2. If there’s an element of order p2, it’s cyclic. If not, the group is killed by p and can
therefore be regarded as a vector space over the field k consisting of integers mod p. Vector spaces
are determined up to isomorphism by their dimensions; here, the dimension must be 2 because a
vector space of dimension n over k has pn elements. Summary: G can be cyclic or non-cyclic, but
it’s determined uniquely up to isomorphism once we know which type we’re dealing with.

25. For (a), note that G/Z cannot be cyclic and that Z must be non-trivial. Hence G/Z is a non-cyclic
group of order p2 and is therefore isomorphic to C×C by the previous problem. For (b), we consider
a subgroup N of G that has p2 elements. It’s normal because its index in G is the smallest prime
dividing #G. It’s abelian because it has order p2. The group ZN is then an abelian subgroup of G
whose order is p3/#(Z ∩N). Since G is non-abelian, Z ∩N must be of order > 1. Hence its order
is p, so that N contains Z. Finally, for c we note that G must have a subgroup H of order p2.
To construct one, we take an element of order p in the center of G, consider G/N , where N is the
cyclic group generated by this element, and pull back to G a subgroup of G/N of order p. The
subgroup H will be normal because its index, p, is the smallest prime dividing the order of G. The
group H is isomorphic to C ×C, as required, because it’s an abelian group killed by p (and thus a
vector space over the field with p elements).

26a. [Part (b) clearly follows from part (a).] We note that both the p- and the q-Sylow subgroups of G
are normal. This makes G the product of those groups by problem 13 (HW #2). Because p and q
are primes, the two Sylow groups are cyclic. Because p and q are relatively prime, the product of
cyclic groups of those orders is again cyclic.

28. Once you know that there’s a normal Sylow subgroup, you know that the group is solvable because
groups of orders p2 and q are solvable. If the p-Sylow is not normal, we have q ≡ 1 mod p. This
implies that p 6≡ 1 mod q, so the number of q-Sylows must be 1 or p2. In the latter case, we have
p2 ≡ 1 mod q, and thus p ≡ −1 mod q. We seem to have p = 2 and q = 3 when the two congruences
q ≡ 1 mod p and p ≡ −1 mod q are true. To summarize, if one of the two Sylows is not normal,
G is a group of order 12 in which there are three 2-Sylows and four 3-Sylows. What’s wrong with
this is that G will have eight elements of order 3: two from each 3-Sylow. Every 2-Sylow must lie
in the complement of the set of elements of order 3. Thus complement has four elements, so we
conclude that the 2-Sylow is unique in a situation when we posited three of them.

29. Assume that neither the p- nor the q-Sylow subgroup is normal. The number of p-Sylows is either
q or 2q, and similarly the other way around. If the number of p-Sylows is q and vice versa, then p
is 1 mod q and also q is 1 mod p. This is impossible because then p > q and q > p simultaneously.
If the number of p-Sylows is 2q and the number of q-Sylows is 2p, then there are 2p(q−1) elements
of order q and 2q(p− 1) elements of order p. We then have

2p(q − 1) + 2q(p− 1) ≤ 2pq − 2



since there are at least two elements of the group that are of order dividing 2. I get from this
something like pq < p + q, which is pretty absurd. (If p is the bigger prime, then pq < 2p, so
q < 2.) The remaining possibility is that, perhaps after switching p and q, there are 2q p-Sylows
and p q-Sylows. Then p ≡ 1 mod q and 2q ≡ 1 mod p. I seem to get into a contradiction in this
situation as well: Clearly, p is bigger than q and 2q > p. If 2q − 1 = tp, with t an integer, t must
be 1 because q > p. This gives p ≡ −1 mod q, which is impossible because p is 1 mod q.

30. Part (b) is a special case of problem 28. Part (a) was done in class—the point is that the 5-Sylow
is normal because the number of 5-Sylows is a divisor of 8 that is 1 mod 5.

39. It suffices to show that we can map (1, 2, . . . , n − 2) to an arbitrary tuple x1, . . . , xn−2 of distinct
numbers in { 1, . . . , n } by an element of An. Let σ be the permutation sending 1 to x1, 2 to x2,
etc. If σ is even, great. If not, we use σ(n− 1n) instead.

40. For (a), the kernel of the left-translation map An → Perm(An/H) is the intersection of the con-
jugates of H. For n = 3, An has order 3, and H has order 1, so the kernel is trivial. For n = 4,
maybe one has to see by inspection that there’s no normal subgroup of order 3 in An. (The
subgroups of order 3 are generated by 3-cycles, so this should be pretty clear.) For n ≤ 5, the
triviality of the kernel follows from the simplicity of An, which we proved in class. We find in
all cases that the map An → Perm(An/H) is an injection, which identifies An with a subgroup
of index 2 in Perm(An/H) ≈ An. This subgroup contains all 3-cycles of Perm(An/H) since it
contains all squares of elements of Perm(An/H). We’ve seen, though, that An is generated by its
3-cycles if n ≥ 5, so we conclude that the image of An in Perm(An/H) is the alternating subgroup
of Perm(An/H at least when n ≥ 5. For n = 3 and n = 4, we might have to check explicitly that
here is only one possible subgroup of index 2 in Sn.

Part (a) establishes an isomorphism α : An
∼→ Alt(An/H), where Alt(An/H) is the alternating

subgroup of Perm(An/H). Make a bijection between An/H and { 1, . . . , n } that sends the coset
H to the letter “1”. This bijection yields an isomorphism β : Alt(An/H) ≈ An. The composite
β ◦α is an automorphism of An. The first map, α, takes H to the group of elements of Alt(An/H)
that fix H. The map β takes this latter group to H1, the group of elements of An that fix 1.
The composite maps H to H1. Note finally that inner automorphisms of Sn permute the various
subgroups Hi of An. Hence if H is not an Hi, the automorphism βα of An does not come from an
inner automorphism of Sn. This is the point that is needed in the next problem.

41. It’s clear from the context that Lang is talking about 5-Sylow subgroups. The number of 5-Sylows
in a group of order 60 is 1 mod 5 and is a divisor of 12. There are thus six 5-Sylows if there is more
than 1. In a simple group of order 60, there are no normal subgroups of order 5; thus there are six
5-Sylow subgroups. The conjugation map H → PermS, where S is the set of 5-Sylow subgroups,
must be an embedding because H has no non-trivial normal subgroups. Notice that H is generated
by its elements of order 3 since the subgroup of H generated by these elements is normal and not
the identity group. These elements map to even permutations of S because the cubes of their signs
are 1, so the signs must be 1, rather than −1. Hence H gets embedded into A6 as a subgroup
of index 6. By exercise 40, there is an automorphism of A6 that maps H onto the subgroup H1

of A6. To see that this automorphism is not induced from an inner automorphism of S6, we have
to check that H is not one of the subgroups Hi of A6. But each Hi fixes one of the six letters on
which A6 acts. However, H fixes none of the six 5-Sylow subgroups of H (i.e., no element of S).
In fact, the Sylow theorems say in particular that the action of H on S is transitive: the Sylows
are all conjugate to each other.
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46. To prove that PRIM 1 implies PRIM 2, we suppose that there are no non-trivial G-stable
partitions of the G-set S, and let H be the stabilizer of s ∈ S. Clearly, H is a proper subgroup
of G because S has more than two elements. In fact, since G operates transitively on S, the map
g 7→ gs induces a bijection of G-sets G/H ∼→ S; the index (G : H) is the cardinality of S, which is
at least 2. To say that H is maximal is to say that there is no subgroup of G between H and G. To
see that H is maximal, suppose that there is an H ′ strictly between H and G. Then the subsets
of S of the form gH ′ ·s with g ∈ G (or, really, g ∈ G/H ′) form a non-trivial G-stable partition of S.

In the other direction, suppose that there is a non-trivial G-stable partition of S. (We suppose
then that PRIM 1 is false.) Let s be an element of S and let S0 ⊆ S be that subset of S that
contains s and is part of the partition. Then S0 is bigger than {s} but smaller than S. If H is
the stabilizer of s, then H is contained in the stabilizer H ′ of the set S0: the group of g ∈ G that
map S0 to itself. The index (G : H ′) is the number of elements of the partition, whereas the index
(G : H) is the number of elements of S. We have 1 < (G : H ′) < (G : H) because the partition
was supposed to be non-trivial. Hence H is not a maximal subgroup of G.

47. In the situation of this problem, the “transitive” hypothesis means that we can replace S by G/H.
The fidelity means that the intersection of the conjugates of H is the identity subgroup of G. The
action is doubly transitive if G sends each pair of distinct elements of G/H to any arbitrary pair of
distinct elements of G/H. Since G acts transitively on G/H, we can assume that the first entry in
both the source and target pair is the identity coset H. The double transitivity condition means
simply that we can send (H, aH) to (H, bH) whenever a and b are elements of G in the complement
of H. If an element of G sends H to H, it must be in H, so we are saying that H can send an
arbitrary aH (a 6∈ H) to an arbitrary bH (b 6∈ H). This gives part (a).

Suppose now thatG is as in the general statement of the problem and thatG acts doubly transitively
on S. Take distinct elements a and b in S and find g ∈ G that takes (a, b) to (b, a). Then G acts
on the 2-element set {a, b} as an involution, so that G has even order. Some power of G then
has order 2, which implies in particular that G has some elements of order 2. I claim that not all
elements of G with order 2 lie in H. Indeed, the set of elements of order 2 is stable by conjugation.
If all elements of G of order 2 were in H, then they’d all be in the intersection of the conjugates
of H. However, this intersection is trivial because G was assumed to act faithfully on S. Let t
now be an element of order 2 that is not in H. Suppose that g ∈ G is also not in H. Then, by
part (a), we know that there is an h ∈ H such that htH = gH. It follows that g lies in HTH,
where T = {e, t} is the subgroup of G generated by t. If, on the other hand, g does lie in H, then
g = gee also lies in HTH. Thus G = HTH.

Suppose, conversely, that G = HTH, where T = {e, t}, t is of order 2, and t isn’t in H. The cosets
in G/H other than the identity coset are all of the form htH with h ∈ H. It is obvious that H acts
transitively on the set of these cosets, so G acts doubly transitively, as we wanted.

For the formula with n(n − 1), we consider the action of G on S × S, which has cardinality n2.
(The integer n = (G : H) is also the size of S.) There are two orbits: the diagonal and the set of
non-diagonal elements. The latter set is permuted transitively by G; the number of elements in it is
#(G)/d because d is the order of the stabilizer of any one of the elements. We get n2 = n+#(G)/d,
which gives the desired formula.

Finally, we are to prove thatH is maximal ifG acts doubly transitively. We prove the contrapositive.
Suppose, then, that we have H ⊂ K ⊂ G where K is a proper subgroup of G that is bigger than H.
Take k ∈ K, k 6∈ H and g ∈ G, g 6∈ K. The two elements gs and ks of S lie in the complement
of {s} but are not linked by an element of H. Indeed, if gs = hks, then g−1hk ∈ H forces g ∈ K,
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which is impossible by our choice of g. Hence G does not act doubly transitively on S (because of
part (a)).

48. Part (a) is a re-hash of 19(b), since we suppose that there is only one orbit. For part (b), we note
that G acts doubly transitively on S if and only if there are exactly two orbits for the action of G
on S × S: the diagonal (consisting of pairs (s, s)) and the complement of the diagonal. Hence G is
doubly transitive if and only if 2#(G) =

∑
x∈G F (x), where F (x) is the number of fixed points of

x acting on S × S. One sees easily that F (x) = f(x)2; the desired formula now follows from this.

50. We’re trying to show that products exist in the category C of “Z-abelian groups,” abelian groups
furnished with maps to Z. Two such objects might be f : X → Z and g : Y → Z, to use the book’s
notation. The abelian group P := X ×Z Y , as defined in the problem, is naturally a Z-group: we
endow it with the map h : P → Z sending (x, y) to f(x) (which is also g(y). It comes equipped
with p1 : P → X and p2 : P → Y , the maps sending (x, y) to x and y, respectively. These are really
maps in the category of Z-groups because we have, trivially, f ◦ p1 = g ◦ p2 = h.

To show that h : P → Z is really a product is to check that a certain map is a bijection. Namely,
suppose that α : A → Z is an object in the category of Z-abelian groups. For short, we can
write MorC(A,P ) for the set of homomorphisms ϕ : A → P such that h ◦ ϕ = α; we use a similar
abbreviation in other, analogous, contexts. There’s a natural map

MorC(A,P ) → MorC(A,X)×MorC(A, Y )

gotten by composing with p1 and p2. What has to be shown is that this map is a bijection of
sets. A convenient way to do this is to find a map in the opposite direction and to check that the
composites of the two maps are the identity maps of MorC(A,P ) and MorC(A,X) ×MorC(A, Y ),
respectively. Given ψ ∈ MorC(A,X) and θ ∈ MorC(A, Y ), we consider the map A → X × Y
given by a 7→ (ψ(a), θ(a)). Because f ◦ ψ = g ◦ θ = α, (ψ(a), θ(a)) lies in X ×Z Y . Also,
h((ψ(a), θ(a)) = f(ψ(a)) = g(θ(a)) = α(a), so we are really constructing a map A → P in
the category C. I won’t perform the check that this construction is inverse to the construction
MorC(A,P ) → MorC(A,X)×MorC(A, Y ) gotten by composing with p1 and p2.

Lang wants us to show that the pullback of a surjective homomorphism is surjective. Here, there’s
an asymmetric perspective. He imagines that a map f : X → Z is somehow given and that one
pulls back this map by g : Y → Z to obtain p2 : P → Y . We want to show that p2 is surjective if f
is surjective. Given y ∈ Y , we use the surjectivity of f to find x ∈ X such that f(x) = g(y). The
point (x, y) ∈ X×Y is actually then in X×Z Y ; its second coordinate (which is the image of (x, y)
under p2) is y. Since y is an arbitrary element of Y , we see that p2 is surjective, as required.

52. This problem is like #50, but with all the arrows reversed. When Lang writes that f and g are “as
above,” he means “as above with arrows reversed.” We are given f : Z → X and g : Z → Y . We
form

X ⊕Z Y := (X ⊕ Y )/{ (f(z),−g(z)) | z ∈ Z }.

There’s a natural map Z → X ⊕Z Y given by z 7→ (f(z), 0) = (0, g(z)), where we use for “image
in X ⊕Z Y .” We have X → X ⊕Z Y given by x 7→ (x, 0), and there’s a similar map with X
replaced by Y . The composite of X → X ⊕Z Y and f : Z → X is the map Z → X ⊕Z Y that we
constructed, so we really have a morphism in the category of “abelian groups X together with a
map from Z to X,” i.e., the category of homomorphisms f : Z → X (Z fixed but X varying). By
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reasoning similar to that of problem 50, we show that Z → X ⊕Z Y , with the maps X → X ⊕Z Y ,
Y → X ⊕Z Y , is really the coproduct of f and g. The injectivity statement is the following: if f
(say) is injective, then Y → X ⊕Z Y is injective. To show this, suppose that y ∈ Y is in the kernel
of Y → X ⊕Z Y . Then (0, y) = (f(z),−g(z)) for some z. Because f is injective, z = 0, which
implies that y = g(z) = 0.
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