Math 250A, Fall 2004 Problems due September 21, 2004

1. Let G be a group of order $p^n t$, where p is prime to t and $n \ge 1$. As in class, we let S be the set of subsets of G having p^n elements and we view S as a G-set in the natural way. (If $X \in S$, gX is the set of gx with $x \in X$.) Recall from class that the size of the orbit of X is either exactly t or else is a multiple of p. Show that every orbit of size t contains exactly one p-Sylow subgroup of G and deduce the congruence $\#(S) \equiv st \mod p$, where s is the number of p-Sylow subgroups of G.

If P is a p-Sylow subgroup of G, let $O(P) \subseteq S$ be the orbit of P, where we consider P as an element of S. This construction gives us a map from the set of p-Sylow subgroups of G to the set of orbits for the action of G on S. The stabilizer of $P \in S$ clearly contains P. By what we saw in our class discussion, the stabilizer must be exactly P and O(P) must contain exactly t elements. We need to check that the map from the set of Sylow subgroups to the set of orbits with t elements is 1-1 and onto. If P and P' are p-Sylow subgroups such that O(P) = O(P'), then P' = gP for some $g \in G$. Since gP contains the identity element of G, the inverse of g must be in P. Thus $g \in P$ and P' = gP = P. Hence the map is 1-1. To see surjectivity, suppose that the orbit of $X \in S$ has t elements. Then the stabilizer of X is a p-Sylow subgroup P. Take $x \in X$; then we get X = Px. The orbit of X is also the orbit of $x^{-1}X = x^{-1}Px$, so it's O(Q) where Q is the p-Sylow subgroup $x^{-1}Px$.

The indicated congruence follows immediately because S is the disjoint union of its orbits under the action of G. The orbits whose orders are not divisible by p all have t elements. There are ssuch orbits.

2. Let $G = \mathbf{S}_p$ be the symmetric group on p letters, where p is a prime number. Show that G has (p-2)! p-Sylow subgroups and deduce the congruence $(p-1)! \equiv -1 \pmod{p}$, which is known as Wilson's Theorem. Find the number of p-Sylow subgroups of \mathbf{S}_{2p} if p is an odd prime (i.e., $p \neq 2$).

An important point is that the number of elements of order p in a group is p-1 times the number of subgroups of order p in the group. Indeed, each subgroup of order p has p-1 elements of order p in it, and an element of order p is in a unique subgrop of order p, namely the group that it generates. In \mathbf{S}_p , there are (p-1)! elements of order p. To see this, we think about the cycle decomposition of an element of order p and realize that the elements of order p in \mathbf{S}_p are exactly the *p*-cycles. A *p*-cycle is described by a list (a_1, \ldots, a_p) , where the a_i are just the numbers from 1 to p, listed in some order. There are p! lists, but each *p*-cycle is described by p different lists because lists should really be viewed as lying on a circle. Hence there are (p-1)! elements of order p and thus (p-2)! p-Sylow subgroups of \mathbf{S}_p . We get $(p-2)! \equiv 1 \mod p$ by the Sylow theorems; Wilson's theorem follows on multiplying by p-1. (See also http://planetmath.org/encyclopedia/GroupTheoreticProofOfWilsonsTheorem.html.)

The problem about \mathbf{S}_{2p} looked harder than I intended, so I decided to take it out. On reflection, I decided that the best way to do the problem is to write down one *p*-Sylow subgroup *P* of \mathbf{S}_{2p} , calculate the order of the normalizer *N* of *P*, and then realize that the answer is the index of *N* in \mathbf{S}_{2p} . Take *P* to be the group of order p^2 that is generated by the two *p*-cycles $(12 \cdots p)$ and $(p+1p+2\cdots 2p)$. The only *p*-cycles in *P* are the various non-trivial powers of the two generators. If σ conjugates *P* to *P*, then it has to map $(12 \cdots p)$ either to a power of itself or to a power of $(p+1p+2\cdots 2p)$, and it has to map $(p+1p+2\cdots 2p)$ either to a power of itself or to a power of $(12 \cdots p)$. There are two types of σ : those that map $\{1, \ldots, p\}$ to itself and those that map $\{1, \ldots, p\}$ to $\{p+1, \ldots, 2p\}$. Say σ is going to preserve $\{1, \ldots, p\}$ and will map each of $(12 \cdots p)$ and $(p+1 p+2 \cdots 2p)$ to powers of themselves. Then $\sigma(1)$ and $\sigma(2)$ can be arbitrary distinct elements of $\{1, \ldots, p\}$, but $\sigma(3), \ldots, \sigma(p)$ are determined by $\sigma(1)$ and $\sigma(2)$; similarly $\sigma(p+1)$ and $\sigma(p+2)$ determine $\sigma(p+3), \ldots, \sigma(2p)$. The number of σ that preserve $\{1, \ldots, p\}$ and that normalize P will be $(p(p-1))^2$; the same number of σ send $\{1, \ldots, p\}$ to $\{p+1, \ldots, 2p\}$ and normalize P. This tells me that the order of N is $2(p(p-1))^2$ and thus that the number of p-Sylow subgroups is $(2p)!/(2p^2(p-1)^2)$. This number is 10 if p = 3, for example. You can check easily that this number is 1 mod p, which it's supposed to be.

3. If X is a subset of a group G, let C(X) be the centralizer of X, i.e., the group of those elements of G that commute with all elements of X. Show that C(X) = C(C(C(X))).

This one turned out to be a matter of simple logic, with no deep mathematics involved. If X is a subset of G, then X commutes with all elements in C(X), so X belongs to the commutator of C(X): we have $X \subseteq C(C(X))$. Apply this with X replaced by C(X); we get $C(X) \subseteq C(C(C(X)))$. Because X is in C(C(X)), the condition of commuting with C(C(X)) is at least as stringent as the condition of commuting with X, so that $C(C(C(X))) \subseteq C(X)$.

4. Let G be a group whose order is twice an odd number. For $g \in G$, let α_g be the permutation of G given by the formula $x \mapsto gx$. Show that α_g is an even permutation if and only if g has odd order. Conclude that the elements of G with odd order form a subgroup H of G with (G : H) = 2. Explain in your solution why it makes sense to talk about the sign of the permutation α_g ; the potentially complicating issue is that G is not an ordered set.

Let G be a group with n elements, and let g be an element of G. After we order the elements of G, multiplication by g (i.e., the map α_g) becomes a permutation σ of $\{1, \ldots, n\}$. If we re-order the elements of G, we change σ into a permutation of the form $\tau \sigma \tau^{-1}$, with $\tau \in \mathbf{S}_n$. Since σ and $\tau \sigma \tau^{-1}$ have the same sign, we can declare the sign of α_g to be the sign of σ ; this number in $\{\pm 1\}$ will be well defined.

Suppose that g has order m; note that m divides n. The cycle decomposition of α_g reflects the decomposition of G into orbits under the action of the subgroup of G consisting of the powers of α_g . These orbits will have length m, and there will be n/m orbits. The sign of α_g is thus $((-1)^{m+1})^{n/m}$. Hence α_g is an odd permutation if and only if m is even and n/m is odd.

In the situation of the problem, the order of G is twice an odd number. Hence if m is even, n/m is automatically odd. Thus the elements with even order are exactly those whose signs are odd; the elements of odd order are exactly those with even sign. (We declare the sign of g to be the sign of α_g .) The odd-order elements constitute the kernel of the map $G \to \{\pm 1\}$ defined by $g \mapsto \text{sign } g$. Therefore, they form a subgroup of G.

5. Let G be a group of order 2p, where p is an odd prime number. Show that G is cyclic if and only if the 2-Sylow subgroup of G is normal.

If G is cyclic, then it has a unique 2-Sylow subgroup: finite cyclic groups have at most one subgroup of a given order. Thus the 2-Sylow of G will be normal. Suppose now G has a normal 2-Sylow subgroup H. It will also have a normal p-Sylow subgroup P. (A subgroup of index 2 in a finite group is always normal.) It follows that G = HP is isomorphic to the product $H \times P$. (Recall problem 13 of Chapter I, which appeared on the previous assignment.) The groups H and P are cyclic groups of co-prime order, so their product is again cyclic. 6. Find two non-isomorphic nonabelian groups of order 30.

How about $\mathbf{S}_3 \times \mathbf{Z}/5\mathbf{Z}$ and the dihedral group of order 30? The first group has only 3 elements of order 2, whereas the second group has 15 elements of order 2.

7. Calculate the order of the conjugacy class of (12)(34) in the symmetric group \mathbf{S}_n $(n \ge 4)$. Find the order of the centralizer of (12)(34) in \mathbf{S}_n .

The conjugacy class consists of all products $(\sigma(1) \sigma(2))(\sigma(3) \sigma(4))$, where σ runs over \mathbf{S}_n . Thus the conjugacy class consists of all products of two disjoint transpositions. The number of such products is n(n-1)(n-2)(n-3)/8, if I'm not mistaken: (ab) is the same as (ba), and (ab)(cd) = (cd)(ab). The centralizer of an element is a stabilizer under the action of \mathbf{S}_n on itself by conjugation. I conclude that the centralizer of (12)(34) has order 8n!/n(n-1)(n-2)(n-3) = 8(n-4)!. This makes perfect sense, since the centralizer contains the symmetric group on $\{5, 6, \ldots, n\}$, the 4-cycle (1324), and the 2-cycles (12) and (34).

8. Suppose that G is a subgroup of the symmetric group S_n and that the order of G is a power of a prime number that does not divide n. Show that some element of $\{1, \ldots, n\}$ is left fixed by all permutations in G.

The order of G has the form p^k , where p is a prime number. The assumption of the problem is that p does not divide n. (Thanks to Chu Wee for clarifying this on the comments page.) The group G acts on the set $S = \{1, 2, ..., n\}$. We are supposed to show that the set S^G is non-empty; here, S^G is the set of elements of S that are fixed by all elements of G. The congruence $\#(S) \equiv \#(S^G)$ mod p was established in class. The left-hand side, #(S) = n is prime to p, so the right-hand side, $\#(S^G)$, is non-zero mod p as well. Consequently, $\#(S^G)$ is non-zero, which means that S^G is non-empty.

9. Suppose that G is a group with three normal subgroups N_1 , N_2 , N_3 . Assume that $G = N_i N_j$ and that $N_i \cap N_j = \{e\}$ for $i \neq j$. Show that G is abelian and that the three normal subgroups are isomorphic to each other.

As in the solution to problem 13 of Chapter I, elements of N_i commute with elements of N_j whenever i and j are distinct indices and $1 \leq i, j \leq 3$. Thus elements of N_1 , for instance, commute with elements of $N_2N_3 = G$. Thus N_1 is in the center of G; so is N_2 , by symmetry. Hence $G = N_1N_2$ is in the center of G, so that G is abelian. Now consider the map $N_1 \to G/N_2$ gotten by composing the inclusion $N_1 \hookrightarrow G$ and the canonical map $G \to G/N_2$. This map is an isomorphism of groups because $G = N_1N_2$ and $N_1 \cap N_2 = \{e\}$. Thus G/N_2 is isomorphic to N_1 ; by symmetry, it is also isomorphic to N_3 . The conclusion now follows: N_1 and N_3 are isomorphic, and similarly N_1 and N_2 are isomorphic.

The last 8 problems came from old Math Department prelim exams, by the way.