Math 250A, Fall 2004
Problems due September 21, 2004

Let G be a group of order p™t, where p is prime tot and n > 1. As in class, we let S be the set
of subsets of G having p" elements and we view S as a G-set in the natural way. (If X € S, gX is
the set of gx with x € X.) Recall from class that the size of the orbit of X is either exactly t or
else is a multiple of p. Show that every orbit of size t contains exactly one p-Sylow subgroup of G
and deduce the congruence #(S) = st mod p, where s is the number of p-Sylow subgroups of G.

If P is a p-Sylow subgroup of G, let O(P) C S be the orbit of P, where we consider P as an element
of S. This construction gives us a map from the set of p-Sylow subgroups of G to the set of orbits
for the action of G on S. The stabilizer of P € S clearly contains P. By what we saw in our class
discussion, the stabilizer must be exactly P and O(P) must contain exactly ¢ elements. We need
to check that the map from the set of Sylow subgroups to the set of orbits with ¢ elements is 1-1
and onto. If P and P’ are p-Sylow subgroups such that O(P) = O(P’), then P’ = gP for some
g € G. Since gP contains the identity element of G, the inverse of g must be in P. Thus g € P
and P’ = gP = P. Hence the map is 1-1. To see surjectivity, suppose that the orbit of X € S has
t elements. Then the stabilizer of X is a p-Sylow subgroup P. Take z € X; then we get X = Px.
The orbit of X is also the orbit of 271X = 27! Pz, so it’s O(Q) where Q is the p-Sylow subgroup
x~ 1 Px.

The indicated congruence follows immediately because S is the disjoint union of its orbits under
the action of G. The orbits whose orders are not divisible by p all have ¢ elements. There are s
such orbits.

Let G = S, be the symmetric group on p letters, where p is a prime number. Show that G has
(p — 2)! p-Sylow subgroups and deduce the congruence (p — 1)! = —1 (mod p), which is known as
Wilson’s Theorem. Find the number of p-Sylow subgroups of Sq,, if p is an odd prime (i.e., p # 2).

An important point is that the number of elements of order p in a group is p — 1 times the
number of subgroups of order p in the group. Indeed, each subgroup of order p has p — 1 ele-
ments of order p in it, and an element of order p is in a unique subgrop of order p, namely the
group that it generates. In S, there are (p — 1)! elements of order p. To see this, we think
about the cycle decomposition of an element of order p and realize that the elements of order p
in S, are exactly the p-cycles. A p-cycle is described by a list (a1, ...,a,), where the a; are just
the numbers from 1 to p, listed in some order. There are p! lists, but each p-cycle is described
by p different lists because lists should really be viewed as lying on a circle. Hence there are
(p — 1)! elements of order p and thus (p — 2)! p-Sylow subgroups of S,. We get (p —2)! =1
mod p by the Sylow theorems; Wilson’s theorem follows on multiplying by p — 1. (See also
http://planetmath.org/encyclopedia/GroupTheoreticProof0fWilsonsTheorem.html.)

The problem about Sy, looked harder than I intended, so I decided to take it out. On reflection,
I decided that the best way to do the problem is to write down one p-Sylow subgroup P of Sy,
calculate the order of the normalizer N of P, and then realize that the answer is the index of IV
in Sy,. Take P to be the group of order p? that is generated by the two p-cycles (12 --- p) and
(p+1p+2---2p). The only p-cycles in P are the various non-trivial powers of the two generators.
If o conjugates P to P, then it has to map (12 --- p) either to a power of itself or to a power of
(p+1p+2---2p), and it has to map (p+ 1p+ 2 --- 2p) either to a power of itself or to a power
of (12 ---p). There are two types of o: those that map {1,...,p} to itself and those that map
{1,...,p} to{p+1,...,2p}. Say o is going to preserve {1,...,p} and will map each of (12 - -- p) and



(p+1p+2--- 2p) to powers of themselves. Then o(1) and o(2) can be arbitrary distinct elements
of {1,...,p}, but 0(3),...,0(p) are determined by o(1) and o(2); similarly o(p + 1) and o(p + 2)
determine o(p+3),...,0(2p). The number of o that preserve {1,...,p} and that normalize P will
be (p(p — 1))?; the same number of o send {1,...,p} to {p + 1,...,2p} and normalize P. This
tells me that the order of N is 2(p(p — 1))? and thus that the number of p-Sylow subgroups is
(2p)!/(2p?(p—1)?). This number is 10 if p = 3, for example. You can check easily that this number
is 1 mod p, which it’s supposed to be.

If X is a subset of a group G, let C(X) be the centralizer of X, i.e., the group of those elements
of G that commute with all elements of X. Show that C(X) = C(C(C(X))).

This one turned out to be a matter of simple logic, with no deep mathematics involved. If X is a
subset of G, then X commutes with all elements in C'(X), so X belongs to the commutator of C'(X):
we have X C C(C(X)). Apply this with X replaced by C(X); we get C(X) C C(C(C(X))).
Because X is in C'(C(X)), the condition of commuting with C(C(X)) is at least as stringent as the
condition of commuting with X, so that C(C(C(X))) C C(X).

Let G be a group whose order is twice an odd number. For g € G, let oy be the permutation of G
given by the formula x — gx. Show that oy is an even permutation if and only if g has odd order.
Conclude that the elements of G with odd order form a subgroup H of G with (G : H) = 2. Explain
in your solution why it makes sense to talk about the sign of the permutation og; the potentially
complicating issue is that G is not an ordered set.

Let G be a group with n elements, and let g be an element of G. After we order the elements of G,
multiplication by g (i.e., the map a4) becomes a permutation o of {1,...,n}. If we re-order the
elements of G, we change ¢ into a permutation of the form 7o7~!, with 7 € S,,. Since ¢ and 707!
have the same sign, we can declare the sign of o to be the sign of o; this number in {£1} will be
well defined.

Suppose that g has order m; note that m divides n. The cycle decomposition of oy reflects the
decomposition of GG into orbits under the action of the subgroup of G consisting of the powers
of ay. These orbits will have length m, and there will be n/m orbits. The sign of a4 is thus

((—1)m+1)n/m. Hence o is an odd permutation if and only if m is even and n/m is odd.

In the situation of the problem, the order of G is twice an odd number. Hence if m is even, n/m is
automatically odd. Thus the elements with even order are exactly those whose signs are odd; the
elements of odd order are exactly those with even sign. (We declare the sign of g to be the sign
of ay.) The odd-order elements constitute the kernel of the map G — {%1} defined by g + sign g.
Therefore, they form a subgroup of G.

Let G be a group of order 2p, where p is an odd prime number. Show that G is cyclic if and only
if the 2-Sylow subgroup of G is normal.

If G is cyclic, then it has a unique 2-Sylow subgroup: finite cyclic groups have at most one subgroup
of a given order. Thus the 2-Sylow of G will be normal. Suppose now G has a normal 2-Sylow
subgroup H. It will also have a normal p-Sylow subgroup P. (A subgroup of index 2 in a finite
group is always normal.) It follows that G = HP is isomorphic to the product H x P. (Recall
problem 13 of Chapter I, which appeared on the previous assignment.) The groups H and P are
cyclic groups of co-prime order, so their product is again cyclic.
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Find two non-isomorphic nonabelian groups of order 30.

How about S3 x Z/5Z and the dihedral group of order 30?7 The first group has only 3 elements of
order 2, whereas the second group has 15 elements of order 2.

Calculate the order of the conjugacy class of (12)(34) in the symmetric group S, (n > 4). Find
the order of the centralizer of (12)(34) in S,,.

The conjugacy class consists of all products (o(1) 0(2))(c(3) o(4)), where o runs over S,,. Thus the
conjugacy class consists of all products of two disjoint transpositions. The number of such products
is n(n—1)(n—2)(n—3)/8, if I'm not mistaken: (ab) is the same as (ba), and (ab)(cd) = (cd)(ab).
The centralizer of an element is a stabilizer under the action of S,, on itself by conjugation. I
conclude that the centralizer of (12)(34) has order 8n!/n(n —1)(n — 2)(n — 3) = 8(n — 4)!. This
makes perfect sense, since the centralizer contains the symmetric group on {5,6,...,n}, the 4-cycle
(1324), and the 2-cycles (12) and (34).

Suppose that G is a subgroup of the symmetric group S,, and that the order of G is a power of
a prime number that does not divide n. Show that some element of {1,...,n} is left fixed by all
permutations in G.

The order of G has the form p*, where p is a prime number. The assumption of the problem is that
p does not divide n. (Thanks to Chu Wee for clarifying this on the comments page.) The group
G acts on the set S = {1,2,...,n}. We are supposed to show that the set S¢ is non-empty; here,
S% is the set of elements of S that are fixed by all elements of G. The congruence #(S) = #(S%)
mod p was established in class. The left-hand side, #(S) = n is prime to p, so the right-hand
side, #(59), is non-zero mod p as well. Consequently, #(S%) is non-zero, which means that S¢ is
non-empty.

Suppose that G is a group with three normal subgroups Ny, Na, N3. Assume that G = N;N; and
that N; N N; = {e} for i # j. Show that G is abelian and that the three normal subgroups are
isomorphic to each other.

As in the solution to problem 13 of Chapter I, elements of IV; commute with elements of IN; whenever
1 and j are distinct indices and 1 < 4,7 < 3. Thus elements of Ny, for instance, commute with
elements of NoN3 = G. Thus Nj is in the center of G; so is Ny, by symmetry. Hence G = N1 Ns is
in the center of G, so that G is abelian. Now consider the map N; — G /N3 gotten by composing
the inclusion N7 — G and the canonical map G — G/N,. This map is an isomorphism of groups
because G = N1 Ny and N7 N Ny = {e}. Thus G/N; is isomorphic to Ny; by symmetry, it is also
isomorphic to N3. The conclusion now follows: N7 and N3 are isomorphic, and similarly N, and Ny
are isomorphic.

The last 8 problems came from old Math Department prelim exams, by the way.



