
Math 250A, Fall 2004
Problems due September 21, 2004

1. Let G be a group of order pnt, where p is prime to t and n ≥ 1. As in class, we let S be the set
of subsets of G having pn elements and we view S as a G-set in the natural way. (If X ∈ S, gX is
the set of gx with x ∈ X.) Recall from class that the size of the orbit of X is either exactly t or
else is a multiple of p. Show that every orbit of size t contains exactly one p-Sylow subgroup of G
and deduce the congruence #(S) ≡ st mod p, where s is the number of p-Sylow subgroups of G.

If P is a p-Sylow subgroup of G, let O(P ) ⊆ S be the orbit of P , where we consider P as an element
of S. This construction gives us a map from the set of p-Sylow subgroups of G to the set of orbits
for the action of G on S. The stabilizer of P ∈ S clearly contains P . By what we saw in our class
discussion, the stabilizer must be exactly P and O(P ) must contain exactly t elements. We need
to check that the map from the set of Sylow subgroups to the set of orbits with t elements is 1-1
and onto. If P and P ′ are p-Sylow subgroups such that O(P ) = O(P ′), then P ′ = gP for some
g ∈ G. Since gP contains the identity element of G, the inverse of g must be in P . Thus g ∈ P
and P ′ = gP = P . Hence the map is 1-1. To see surjectivity, suppose that the orbit of X ∈ S has
t elements. Then the stabilizer of X is a p-Sylow subgroup P . Take x ∈ X; then we get X = Px.
The orbit of X is also the orbit of x−1X = x−1Px, so it’s O(Q) where Q is the p-Sylow subgroup
x−1Px.

The indicated congruence follows immediately because S is the disjoint union of its orbits under
the action of G. The orbits whose orders are not divisible by p all have t elements. There are s
such orbits.

2. Let G = Sp be the symmetric group on p letters, where p is a prime number. Show that G has
(p − 2)! p-Sylow subgroups and deduce the congruence (p − 1)! ≡ −1 (mod p), which is known as
Wilson’s Theorem. Find the number of p-Sylow subgroups of S2p if p is an odd prime (i.e., p 6= 2).

An important point is that the number of elements of order p in a group is p − 1 times the
number of subgroups of order p in the group. Indeed, each subgroup of order p has p − 1 ele-
ments of order p in it, and an element of order p is in a unique subgrop of order p, namely the
group that it generates. In Sp, there are (p − 1)! elements of order p. To see this, we think
about the cycle decomposition of an element of order p and realize that the elements of order p
in Sp are exactly the p-cycles. A p-cycle is described by a list (a1, . . . , ap), where the ai are just
the numbers from 1 to p, listed in some order. There are p! lists, but each p-cycle is described
by p different lists because lists should really be viewed as lying on a circle. Hence there are
(p − 1)! elements of order p and thus (p − 2)! p-Sylow subgroups of Sp. We get (p − 2)! ≡ 1
mod p by the Sylow theorems; Wilson’s theorem follows on multiplying by p − 1. (See also
http://planetmath.org/encyclopedia/GroupTheoreticProofOfWilsonsTheorem.html.)

The problem about S2p looked harder than I intended, so I decided to take it out. On reflection,
I decided that the best way to do the problem is to write down one p-Sylow subgroup P of S2p,
calculate the order of the normalizer N of P , and then realize that the answer is the index of N
in S2p. Take P to be the group of order p2 that is generated by the two p-cycles (1 2 · · · p) and
(p+1 p+2 · · · 2p). The only p-cycles in P are the various non-trivial powers of the two generators.
If σ conjugates P to P , then it has to map (1 2 · · · p) either to a power of itself or to a power of
(p + 1 p + 2 · · · 2p), and it has to map (p + 1 p + 2 · · · 2p) either to a power of itself or to a power
of (1 2 · · · p). There are two types of σ: those that map {1, . . . , p} to itself and those that map
{1, . . . , p} to {p+1, . . . , 2p}. Say σ is going to preserve {1, . . . , p} and will map each of (1 2 · · · p) and



(p + 1 p + 2 · · · 2p) to powers of themselves. Then σ(1) and σ(2) can be arbitrary distinct elements
of {1, . . . , p}, but σ(3), . . . , σ(p) are determined by σ(1) and σ(2); similarly σ(p + 1) and σ(p + 2)
determine σ(p +3), . . . , σ(2p). The number of σ that preserve {1, . . . , p} and that normalize P will
be (p(p − 1))2; the same number of σ send {1, . . . , p} to {p + 1, . . . , 2p} and normalize P . This
tells me that the order of N is 2(p(p − 1))2 and thus that the number of p-Sylow subgroups is
(2p)!/(2p2(p−1)2). This number is 10 if p = 3, for example. You can check easily that this number
is 1 mod p, which it’s supposed to be.

3. If X is a subset of a group G, let C(X) be the centralizer of X, i.e., the group of those elements
of G that commute with all elements of X. Show that C(X) = C(C(C(X))).

This one turned out to be a matter of simple logic, with no deep mathematics involved. If X is a
subset of G, then X commutes with all elements in C(X), so X belongs to the commutator of C(X):
we have X ⊆ C(C(X)). Apply this with X replaced by C(X); we get C(X) ⊆ C(C(C(X))).
Because X is in C(C(X)), the condition of commuting with C(C(X)) is at least as stringent as the
condition of commuting with X, so that C(C(C(X))) ⊆ C(X).

4. Let G be a group whose order is twice an odd number. For g ∈ G, let αg be the permutation of G
given by the formula x 7→ gx. Show that αg is an even permutation if and only if g has odd order.
Conclude that the elements of G with odd order form a subgroup H of G with (G : H) = 2. Explain
in your solution why it makes sense to talk about the sign of the permutation αg; the potentially
complicating issue is that G is not an ordered set.

Let G be a group with n elements, and let g be an element of G. After we order the elements of G,
multiplication by g (i.e., the map αg) becomes a permutation σ of {1, . . . , n}. If we re-order the
elements of G, we change σ into a permutation of the form τστ−1, with τ ∈ Sn. Since σ and τστ−1

have the same sign, we can declare the sign of αg to be the sign of σ; this number in {±1} will be
well defined.

Suppose that g has order m; note that m divides n. The cycle decomposition of αg reflects the
decomposition of G into orbits under the action of the subgroup of G consisting of the powers
of αg. These orbits will have length m, and there will be n/m orbits. The sign of αg is thus(
(−1)m+1

)n/m. Hence αg is an odd permutation if and only if m is even and n/m is odd.

In the situation of the problem, the order of G is twice an odd number. Hence if m is even, n/m is
automatically odd. Thus the elements with even order are exactly those whose signs are odd; the
elements of odd order are exactly those with even sign. (We declare the sign of g to be the sign
of αg.) The odd-order elements constitute the kernel of the map G → {±1} defined by g 7→ sign g.
Therefore, they form a subgroup of G.

5. Let G be a group of order 2p, where p is an odd prime number. Show that G is cyclic if and only
if the 2-Sylow subgroup of G is normal.

If G is cyclic, then it has a unique 2-Sylow subgroup: finite cyclic groups have at most one subgroup
of a given order. Thus the 2-Sylow of G will be normal. Suppose now G has a normal 2-Sylow
subgroup H. It will also have a normal p-Sylow subgroup P . (A subgroup of index 2 in a finite
group is always normal.) It follows that G = HP is isomorphic to the product H × P . (Recall
problem 13 of Chapter I, which appeared on the previous assignment.) The groups H and P are
cyclic groups of co-prime order, so their product is again cyclic.
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6. Find two non-isomorphic nonabelian groups of order 30.

How about S3 × Z/5Z and the dihedral group of order 30? The first group has only 3 elements of
order 2, whereas the second group has 15 elements of order 2.

7. Calculate the order of the conjugacy class of (1 2)(3 4) in the symmetric group Sn (n ≥ 4). Find
the order of the centralizer of (1 2)(3 4) in Sn.

The conjugacy class consists of all products (σ(1)σ(2))(σ(3)σ(4)), where σ runs over Sn. Thus the
conjugacy class consists of all products of two disjoint transpositions. The number of such products
is n(n−1)(n−2)(n−3)/8, if I’m not mistaken: (a b) is the same as (b a), and (a b)(c d) = (c d)(a b).
The centralizer of an element is a stabilizer under the action of Sn on itself by conjugation. I
conclude that the centralizer of (1 2)(3 4) has order 8n!/n(n − 1)(n − 2)(n − 3) = 8(n − 4)!. This
makes perfect sense, since the centralizer contains the symmetric group on {5, 6, . . . , n}, the 4-cycle
(1 3 2 4), and the 2-cycles (1 2) and (3 4).

8. Suppose that G is a subgroup of the symmetric group Sn and that the order of G is a power of
a prime number that does not divide n. Show that some element of {1, . . . , n} is left fixed by all
permutations in G.

The order of G has the form pk, where p is a prime number. The assumption of the problem is that
p does not divide n. (Thanks to Chu Wee for clarifying this on the comments page.) The group
G acts on the set S = {1, 2, . . . , n}. We are supposed to show that the set SG is non-empty; here,
SG is the set of elements of S that are fixed by all elements of G. The congruence #(S) ≡ #(SG)
mod p was established in class. The left-hand side, #(S) = n is prime to p, so the right-hand
side, #(SG), is non-zero mod p as well. Consequently, #(SG) is non-zero, which means that SG is
non-empty.

9. Suppose that G is a group with three normal subgroups N1, N2, N3. Assume that G = NiNj and
that Ni ∩ Nj = {e} for i 6= j. Show that G is abelian and that the three normal subgroups are
isomorphic to each other.

As in the solution to problem 13 of Chapter I, elements of Ni commute with elements of Nj whenever
i and j are distinct indices and 1 ≤ i, j ≤ 3. Thus elements of N1, for instance, commute with
elements of N2N3 = G. Thus N1 is in the center of G; so is N2, by symmetry. Hence G = N1N2 is
in the center of G, so that G is abelian. Now consider the map N1 → G/N2 gotten by composing
the inclusion N1 ↪→ G and the canonical map G → G/N2. This map is an isomorphism of groups
because G = N1N2 and N1 ∩ N2 = {e}. Thus G/N2 is isomorphic to N1; by symmetry, it is also
isomorphic to N3. The conclusion now follows: N1 and N3 are isomorphic, and similarly N1 and N2

are isomorphic.

The last 8 problems came from old Math Department prelim exams, by the way.
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