
Math 250A, Fall 2004
Problems due September 14, 2004

The problems this week were from Lang’s “Algebra, Chapter I.”

13. A key point here is that H and N have trivial intersection in part (a) because the order of the
intersection divides the orders of both groups. For h ∈ H, n ∈ N , the commutator nhn−1h−1

lies in both groups: for example, it’s in H because we can re-write it as
(
nhn−1

)
h−1 and the

factor in parenthesis is in H because H is normal. Thus the commutators nhn−1h−1 are trivial,
meaning that elements of H and N commute with each other. The set-theoretic map H × N →
HN , (h, n) 7→ hn is then a homomorphism of groups. It’s clearly surjective, and it’s injective by
problem 4. Part (b) looks to me like an inductive consequence of part (a), since Hr will be prime
to the order of H1 · · ·Hr1 for each r.

14. Here, G is a finite group and N is a normal subgroup of G such that N and G/N have relatively
prime orders. If H is a subgroup of G with the same order as G/N , then H and N have trivial
intersection in G because H ∩N has order dividing the gcd of the orders of H and N ; this gcd is 1.
Hence the order of HN is the product of the orders of H and N , i.e., of G/N and N . The product
of these two orders is the order of G, so we must have HN = G.

For the second part of the problem, we first consider a homomorphism f : N → G. The image
of this homomorphism lies in N , since the composite of this homomorphism with the canonical
map N → G/N has an image whose order divides both #(N) and #(G/N) and therefore must
be trivial. In particular, if g is an automorphism of G, then the restriction of g to N maps N
to N . Since this restriction is an injective homomorphism, and since N is finite, the restriction is
surjective.

15–16. For each s ∈ S, let Gs be the stabilizer of s. We have to prove that the union of the Gs is not all
of G. Now

#(
⋃
s∈S

Gs) ≤
∑
s∈S

#(Gs);

on the other hand, (G : Gs) = #(S) for all s because there is only one orbit. Thus #(Gs) =
#(G)/#(S) for each s, and we get

∑
s∈S #(Gs) = #(G). We seem to get only the trivial inequality

#(∪s∈SGs) ≤ #G from all this. In fact, however, we have equality here only when the union of
the Gs is a disjoint union. On the other hand, two Gs groups are never disjoint because they both
contain the identity element of G. Conclusion: we have equality only when S is a singleton set.
This possibility is ruled out by the hypothesis to the problem.

Next, consider problem 16 with H ⊂ G. We can introduce the G-set S = G/H and observe that
the stabilizer of a point s = gH is gHg−1. To say that the union of these stabilizers is not all
of G—the assertion of problem 15—is to say that G isn’t the union of the conjugates of H—the
assertion of problem 16.

Another way to view problem 16 is to say that the number of conjugates of H is G/N(H); here,
we’re thinking about the action of G on the set of conjugates of H by conjugation. The sum of the
orders of the distinct conjugates of H is then #(H) · #G

#N(H) = #G · #H
#N(H) . This sum is less than

the order of G unless H is its own normalizer; in that case, the sum is precisely the order of G. But
even in this extreme case, the number of elements in the union of the conjugates of H can be equal
to the sum of the orders of the conjugates only when the union is disjoint. If there are at least two



conjugates, the union is not disjoint because all conjugates contain the identity element of G. To
summarize: the union is conjugates can fill up G only when two conditions are satisfied: (1) H is
its own normalizer, and (2) H has only one conjugate. Condition (1) implies that the number of
conjugates of H is (G : H). If this is true and H has only one conjugate, then G = H; this equality
was excluded by the hypothesis.

17. This seems like a complete triviality. The set C is the union of its fibers relative to the projection
map C → X. In other words, for each x ∈ X, we can let Cx be the set of elements of C whose first
coordinate is x. Then C is the disjoint union of the Cx and the number of elements of C is the
sum of the numbers #(Cx). These numbers are the ϕ(x) of the problem.

19. For each t in Gs, Gt = Gs. Hence the displayed sum in part (a) is just 1/#(Gs) added up #(Gs)
times. So, indeed, the sum is 1.

For part (b), it might be a good idea to introduce the subset C of G×S that consists of pairs (g, s)
for which gs = s. By problem 17, the number of elements of C is the sum

∑
f(x) that appears in

this part. If we project down to the second factor S instead of to the first factor G, we get that this
sum is alternatively the sum

∑
t∈S #(Gt); here, Gt is the isotropy group of t: the set of g that fix t.

Now the number of orbits for the action of G on S is
∑

t∈S
1

#(Gt) in view of part (a) of this problem.

On the other hand, 1
#(Gt) = #(Gt)

#G for each t. Thus the number of orbits is 1
#G

∑
t∈S #(Gt), and

we get the desired equality.

Summary: even though we haven’t been doing anything deep here, we’ve actually proved a striking
statement whose proof might be hard to find if we were starting from scratch: The number of orbits
for the action of G on S is the average number of fixed points of an element of G. An equivalent
(though more precise-sounding) statement is that the average number of fixed points is 1 on each
orbit. Notice, by the way, that this implies the statement of problem 15. In that problem, the
identity element has more than one fixed point on S; therefore, some element has to have 0 fixed
points to make the average come out to be 1.

20. The group P operates on A by conjugation. Since P is a p-group, the number of fixed points for
the operation is congruent mod p to the number of elements of A. Since A has p elements, the
number of fixed points is therefore congruent to 0 mod p. Clearly, this number is at most p and at
least 1 (because the identity is a visible fixed point). Hence there are p fixed points, meaning that
the action by conjugation is trivial. Thus A is central.

22. Assume that H is normal in G and that H is a p-subgroup of G. (This means that the order of H
is a power of p.) We have seen in class that H is contained in some p-Sylow subgroup P of G.
Also, we have seen that all p-Sylow subgroups of G are of the form gPg−1 with g ∈ G. We see that
gPg−1 contains gHg−1, which is H. Hence H is contained in each p-Sylow subgroup of G.

23bc. Note that we did 23a in class. If N(P ) = N(P ′), then P ′ is contained in N(P ′) = N(P ), so
P ′ = P by part (a). For the final part, we note first that N(P ) is contained in N(N(P )): every
subgroup of G normalizes itself! We have to show that the normalizer of N(P ) is contained
in N(P ). This means that all elements of G that normalize N(P ) also normalize P . Suppose
that gN(P )g−1 = N(P ), and consider gPg−1, which is a p-Sylow subgroup of G that is contained
in N(P ). Because P and gPg−1 are both p-Sylow subgroups of N(P ), they are conjugate in N(P ).
This means that there is an x ∈ N(P ) such that gPg−1 = xPx−1. But xPx−1 = P because x
normalizes P . Thus gPg−1 = P , so that g normalizes P , as required.
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