
Math 250A, Fall 2004
Homework Assignment #9

Problems due November 30, 2004

Problems from Lang’s Chapter V:

3. In this context, α and β lie in some field containing F ; call this field E if you want. Then
[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] = [F (α, β) : F (β)][F (β) : F ] by the tower law.
Thus [F (α, β) : F ] is divisible both by [F (α) : F ] and by [F (β) : F ]. Since these numbers
are relatively prime, [F (α, β) : F ] is divisible by their product, [F (α) : F ][F (β) : F ].
Accordingly, [F (α, β) : F (α)] is divisible by [F (β) : F ]. Now the degree [L(β) : L] is
the degree of the irreducible polynomial of β over L; we apply this remark with L = F
and L = F (α). We conclude that the degree of irreducible polynomial of β over F (α)
is divisible by the degree of the irreducible polynomial of β over F . Since the former
polynomial divides the latter, the two polynomials must be equal. This means that the
irreducible polynomial of β over F remains irreducible over F (α), which is what we were
required to show.

5. We know a lot more than typical readers of this problem, since we have discussed in
class the material on page 278. The first thing that we should point out is that x6 +x3 +1
is irreducible. If you call this polynomial f(x), then f(x + 1) = x6 + 6x5 + 15x4 + 21x3 +
18x2+9x+3 is Eisenstein at 3. In general, if α is an algebraic number, the maps Q(α)→ C
correspond to roots β of the minimal polynomial of α. Given β, you get a map by sending
g(α) to g(β); here g is a polynomial with rational coefficients. (See p. 233.) The main
point of this problem is to characterize the various possible β’s in our situation. Note that
f(x)(x3 − 1) = x9 − 1. This shows that every root of f(x) is a primitive 9th root of unity.
There are six primitive 9th roots of unity, and the irreducibility of f(x) amounts to the
statement that all primitive 9th roots of unity are roots of f(x). The primitive 9th roots
of unity are the αi with i prime to 3 (and taken mod 9). Thus the embeddings Q(α)→ C
are the maps g(α) 7→ g(αi) with i = 1, 2, 4, 5, 7, 8.

7. We have [EF : k] = [EF : F ][F : k] so that the inequality [EF : k] ≤ [E : k][F : k] is
equivalent to the inequality [EF : F ] ≤ [E : k]. If E = k(α), then EF = F (α), and we get
the desired inequality by noting that the degree of the minimal polynomial of α over F is
no bigger than the corresponding degree over k. (As noted in the discussion of problem 3,
the minimal polynomial over F divides the minimal polynomial over k.) We prove the
sought-after inequality in general by writing E = k(α1, . . . , αt) and doing an induction
on t. (I won’t write the details.) The final assertion about relatively prime degrees runs
as in problem 3: We observe that [EF : k] is divisibly by both [E : k] and [F : k] and is
thus divisible by the product of these indices.

9. We have xp8
− 1 = (x − 1)p8

over the field Z/pZ because of the general formula
(a + b)p = ap + bp in characteristic p. Hence the polynomial xp8

− 1 splits completely
already over Z/pZ; its splitting field is the prime field Z/pZ!



11. OK, so we have a large bunch of splitting fields to figure out:

x2 − 2

The splitting field is Q(
√

2). The degree of the field is 2. We know this because x2 − 2 is
irreducible (it’s Eisenstein at 2) and splits completely once we have one root.

x2 − 1

The splitting field is Q. The polynomial splits as (x− 1)(x + 1).

x3 − 2

This problem is analogous to the last problem (with x5−7), which I typed before this one.
The splitting field has degree 6 over Q. Thus 6 is the new 20 if you do the problems in
reverse order. Otherwise, 20 is the new 6.

(x3 − 2)(x2 − 2)

The splitting field is Q(
√

2,
√
−3,

3
√

2), which we view as the composite EF , where E =
Q(
√

2,
√
−3) and F = Q( 3

√
2). The degree [E : Q] is 4, as we can see in various ways;

note, for example, that Q(
√

2,
√
−3)/Q(

√
2) has to be a quadratic extension because the

field Q(
√

2) ⊆ R cannot contain a square root of −3. The degree of F over Q is 3, as was
implicit in our brief discussion of the previous polynomial. By problem 7, the degree of
the splitting field over Q is 12.

x2 + x + 1

This is like the first polynomial. The splitting field is Q(
√
−3), as we see from the quadratic

formula (or by completing the square).

x6 + x3 + 1

As we saw in problem 5, the polynomial is irreducible. If α is one root, then the other
roots are powers of α. Thus the splitting field is Q(α), where α is a root. This field has
degree 6 over Q.

x5 − 7

The polynomial is irreducible (Eisenstein at 7). If α is one root (for example, the real
fifth root of 7 ≈ 1.47577) and β is a primitive fifth root of 1 (for example e

2πi
5 ), then the

splitting field is clearly Q(α, β). Indeed, the roots of the polynomial are the numbers αβj

with j = 0, . . . 4. The field Q(α) has degree 5 over Q, while Q(β) has degree 4 over Q;
note that the minimal polynomial of β is x4 + x3 + x2 + x + 1. The splitting field Q(α, β)
has degree 20 over Q because 4 and 5 are relatively prime. A good exercise for December
is to describe the Galois group Gal(Q(α, β)/Q). Alumni of Math 114 from last semester
should be able to do this with ease (right?).
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