
Math 250A, Fall 2004
Problems due September 7, 2004

I.4 Let H and K be subgroups of a finite group G. Suppose that K is contained in the normalizer of
H. Show that the number of elements in HK is #(H)#(K) divided by the number of elements in
the intersection of H and K.

Consider the surjective map ϕ : H ×K → HK given by (h, k) 7→ hk. The number of elements in
H ×K is #(H)#(K). It suffices to show that the number of elements in #(H)#(K) that map to
a given element of HK is the number of elements in H ∩K. Suppose that we fix hk in HK. Then
elements in H ×K that map to hk have the form (h′, k′) where h′k′ = hk. Write h′ = ht; i.e., set
t = h−1h′. Then k′ = t−1k and we find t ∈ H and t−1 ∈ K. Thus t belongs to H ∩K. It is clear,
more precisely, that the pairs (h′, k′) mapping to hk are in 1-1 correspondence with the elements
t in H ∩K, the correspondence being given by (h′, k′) 7→ h−1h′ = kk′

−1 and t 7→ (ht, t−1k). This
establishes the assertion of the problem. It is a well known fact that HK is a subgroup of G when
K normalizes H, i.e., when K is contained in the normalizer of H. This is easy to check; the main
point is that HK is closed under multiplication because we have

(h1k1)(h2k2) = h1(k1h2k
−1
1 )k1k2

when the hi are in H and the ki are in K. Note that the element in parentheses on the right-hand
side of the equation belongs to H because K normalizes H.

Another comment is that we can write HK as a disjoint union of cosets xK, where x runs over a set
of representatives of the space H/(H ∩K). This is more or less obvious. Indeed, HK is stable by
right multiplication by K, so it is a union of various cosets xK with x in G. However, xK ⊆ HK
if and only if x can be chosen in H. Further, two cosets xK and yK (with x, y ∈ H) are equal if
and only if x and y define the same class in H/(H ∩K). Hence the number of elements in HK is
the index (H : (H ∩K)) times the number of elements of K. This gives us another way to see the
main formula of the problem.

I.5 Let H be a subgroup of G×G′, the product of two groups. Assume that the projections p : H → G
and p′ : H → G′ are both surjective. Let N be the kernel of the second projection and let N ′ be
the kernel of the first. [These are a priori subgroups of H, but is it slightly more convenient to
think of them as subgroups of G and G′, respectively. Thus the kernel of the second projection
is more legitimately N × {e′} when we think of N as a subgroup of G.] Show that N is normal
in G and that N ′ is normal in G′. Show that the image of H in G/N ×G′/N ′ is the graph of an
isomorphism from G/N to G/N ′.

To show that N is normal in G, take (n, e′) in the kernel of the second projection and g ∈ G. By
the surjectivity of the first projection, there is some g′ in G′ so that (g, g′) belongs to H. The
conjugate of (n, e′) by (g, g′) belongs to H; this conjugate is (gng−1, e′), which is in the kernel of
the second projection. Hence we have gng−1 ∈ N , which shows that N is normal. Symmetrically,
we see that N ′ is normal in G′.

The group N × N ′ is now normal in G × G′, and it is contained in H. Hence it is normal in H.
The quotient H̄ := H/(N ×N ′) is a subgroup of (G×G′)/(N ×N ′), a group that we can identify
with G/N × G′/N ′. There are two projection maps H̄ → Ḡ := G/N , H̄ → Ḡ′ := G′/N ′. These
are surjective because H mapped surjectively to G and G′. To say that H̄ is the graph of a
homomorphism Ḡ → Ḡ′ is to say that the first of these projection maps is an isomorphism. To



say that H̄ is the graph of an isomorphism Ḡ
∼→ Ḡ′ is to say that both projection maps are

isomorphisms. We need to show, therefore, that the projection maps are injective.

By symmetry, it’s enough to discuss the first of the two. Consider the map j : H → Ḡ gotten
by composing the canonical map H → H̄ with the first projection H̄ → Ḡ = G/N . The kernel
of j contains N × N ′, and the aim is to show that the kernel is precisely N × N ′. Suppose that
h is an element of N in the kernel of j. Then the image of h in G is an element n of N . Let
k = (n, e′) ∈ G×G′. Then k is an element of N ×N ′ that has the same image as h in G. It follows
that hk−1 has trivial image in G; it’s therefore an element of N ′ (thought of as a subgroup of H).
Hence h is the product of two elements of N ×N ′—one element is in N and the second is in N ′.

I.6 Prove that the group of inner automorphisms of a group G is normal in Aut(G), the group of all
automorphisms of G.

For each g ∈ G, let ιg be the inner automorphism x 7→ gxg−1. Let α be an automorphism of G.
We must show for each g that the composite αιgα

−1 is an inner automorphism of G. Computing,
I found that αιgα

−1 = ια(g). Indeed, if we apply αιgα
−1 to x ∈ G, the result is α

(
gα−1(x)g−1

)
,

which becomes α(g)α
(
α−1(x)

)
α(g−1). This simplifies further to α(g)xα(g)−1.

I.7 Let G be a group such that Aut(G) is cyclic. Prove that G is abelian.

Let Z be the center of G: the group of elements of G that commute with all elements of G. The
group Z is the kernel of the map G → Aut(G) that takes each g to the inner automorphism
“conjugation by g”. Thus G/Z is naturally a subgroup of Aut(G). Since Aut(G) is cyclic, so is its
subgroup G/Z. let g be an element of G whose image in G/Z is a generator of this cyclic group.
Then each element of G may be written as a product giz where i is an integer and z is an element
of the center of G. Since g commutes with each z, it is clear that any two products giz commute
with each other. Hence G is abelian.

I.8 We have a group G and subgroups H and H ′ of G. (The groups H and H ′ could easily be the
same subgroup of G in applications.) Define an equivalence relation ∼ on G by x ∼ y if and only
if y = hxh′ for some h ∈ H,h′ ∈ H ′. You need to check that this really is an equivalence relation,
which is not hard. Note also that the equivalence class of x is the set HxH ′, i.e., the double coset
of x. Because an equivalence relation on a set partitions the set into disjoint equivalence classes,
we get what is needed for part (a), namely that G is the disjoint union of the different HxH ′.

Let C = {c} be a set of representatives for the equivalence classes. (This is the notation introduced
in part b with the addition that we’ve given a name to the set C.) This means explicitly: for
each x ∈ G there is a unique c ∈ C so that there exist h and h′ such that x = hch′. It is
helpful to remember that h and h′ are not necessarily unique. For example, imagine that G is
abelian and that H = H ′. Then we are writing x = chh′ with h, h′ ∈ H. We might change h by
multiplying it by an element t of H and change h′ by multiplying it by t−1. For each c, we consider
H ∩ [c]H ′ = H ∩ (cH ′c−1) as in the text of the problem. This is a subgroup Hc of H; for example,
in the case that we have contemplated (G abelian, H ′ = H), we have Hc = H. If Xc = {xc} is
a set of representatives for the coset space H/Hc, then we do have H =

∐
xc∈Xc

xcHc as in the
first of the two displayed formulas. This is nothing deep or exciting: we are simply writing H as a
disjoint union of cosets of Hc in H.

Now G is the disjoint union over C of double cosets HcH ′. I claim that a given HcH ′ is the disjoint
union of cosets xccH

′, indexed by the elements xc of XC . This claim is exactly what is needed to
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finish off the problem: it gives the displayed decomposition of G as a double disjoint union (where
the first index is c, rather than xc, as noted on the web page). Because c is fixed, we can drop the
subscripts “c” from Xc and xc: we’ll call them X and x, respectively. (Thus x runs over X in the
new notation.) To prove the equality HcH

?=
∐

x xcH ′ is to prove the equality H ·[c]H =
∐

x x([c]H);
we pass between the two by multiplying by c or by c−1 on the right. Set K = [c]H. Then we need
to know only that HK =

∐
x xK, where x runs over a set of representatives of H/(H ∩K). This

decomposition was established above, at the end of our discussion of problem 1.

I.9 Let G be a group and H a subgroup of G of finite index in G. Show that G contains a normal
subgroup N of finite index in G such that N is contained in H.

The group G acts on the finite set G/H by left translation; g ∈ G sends the coset xH to gxH.
This action is a group homomorphism α : G → Perm(G/H). If N is the kernel of α, then we have
an inclusion G/N ↪→ Perm(G/H). Especially, N has finite index in G because G/H is a finite set,
so that Perm(G/H) is a finite group. (If G/H has n elements, Perm(G/H) has n! elements.) The
main issue now is that N consists of the elements of G that fix all cosets xH. Among these cosets
is H itself, which is fixed precisely by the elements of H. (We have gH = H if and only if g lies
in H.) Thus we have N ⊆ H, and we get what was needed.

Suppose now that H1 and H2 have finite index in G. Let N1 and N2 be normal subgroups contained
in H1 and H2 that have finite index in G. Then N1 ∩N2 has finite index in G. Indeed, this group
is the kernel of the map g 7→ (gN1, gn2) from G to the finite group G/N1 ×G/N2. It follows that
H1 ∩H2, which contains N1 ∩N2, has finite index in G as well.
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