Math 250A, Fall 2001 Homework Assignment #7 Problems due October 26, 2004

Part I: Dedekind Rings.

As we have discussed on the comments page, most authors define a Dedekind ring (or Dedekind domain) to be an integral domain that is Noetherian, of dimension 1 and integrally closed in its fraction field. Being of dimension 1 means that the domain is not a field and that non-zero prime ideals are maximal ideals. In homework #6, you showed that a Dedekind ring à la Lang is Noetherian in Exercise 13 and showed that a Dedekind ring is of dimension 1 in Exercise 18 (at the latest). It is understood in Exercises 13–19 that the ring \mathfrak{o} is not a field; also, Lang has a tendency (or "convention," as he refers to it) to omit mentioning that ideals are non-zero. In the following additional problems, you will show that a Dedekind ring à la Lang is integrally closed in its fraction field.

- **1.** Let \mathfrak{o} be a Dedekind ring, and let K be the fraction field of \mathfrak{o} . Suppose that \mathfrak{a} is a fractional ideal of \mathfrak{o} . Show that the set $\{x \in K \mid x\mathfrak{a} \subseteq \mathfrak{o}\}$ coincides with the fractional ideal \mathfrak{a}^{-1} .
- 2. Suppose now that \mathfrak{O} (upper-case " \mathfrak{o} ") is a subring of K that contains \mathfrak{o} and is *finite* over \mathfrak{o} in the sense that \mathfrak{O} is a finitely generated \mathfrak{o} -module. (The action of \mathfrak{o} on \mathfrak{O} is by multiplication inside \mathfrak{O} .) Show that \mathfrak{O} is a fractional ideal of \mathfrak{o} . Let \mathfrak{f} be the fractional ideal \mathfrak{O}^{-1} , so that

$$\mathfrak{f} = \{ x \in K \, | \, x\mathfrak{O} \subseteq \mathfrak{o} \}.$$

Show that \mathfrak{f} is an integral ideal of \mathfrak{o} and in fact that \mathfrak{f} is even an integral ideal of \mathfrak{O} .

- **3.** Using the inclusion $\mathfrak{f}\mathfrak{O} \subseteq \mathfrak{f}$, show that $\mathfrak{f} = \mathfrak{o}$ and then that $\mathfrak{o} = \mathfrak{O}$. Thus \mathfrak{o} has the maximality property that it is equal to \mathfrak{O} whenever \mathfrak{O} contains \mathfrak{o} and is finite over \mathfrak{o} .
- 4. Suppose that $a \in K$ is integral over \mathfrak{o} in the sense that a satisfies an equation

$$a^n + c_{n-1}a^{n-1} + \dots + c_0 = 0$$

with $c_0, c_1, \ldots, c_{n-1} \in \mathfrak{o}$. Show that $a \in \mathfrak{o}$. (Let \mathfrak{O} be the smallest subring of K that contains \mathfrak{o} and a.)

Part II: Fractional ideals in Dedekind rings are projective.

In the following problems, we let \mathfrak{o} be a Dedekind ring.

- 5. Suppose that \mathfrak{a} and \mathfrak{b} are integral ideals that are relatively prime. Show that the natural map $\mathfrak{a} \oplus \mathfrak{b} \to \mathfrak{o}$, $(x + y) \mapsto x + y$ is surjective and that its kernel is \mathfrak{ab} . Prove that the \mathfrak{o} -modules $\mathfrak{o} \oplus \mathfrak{ab}$ and $\mathfrak{a} \oplus \mathfrak{b}$ are isomorphic.
- 6. Suppose now that \mathfrak{a} and \mathfrak{b} are fractional ideals of \mathfrak{o} . (We do not assume that they are integral and we do not assume that they are relatively prime.) Prove that the two \mathfrak{o} -modules $\mathfrak{o} \oplus \mathfrak{a}\mathfrak{b}$ and $\mathfrak{a} \oplus \mathfrak{b}$ are isomorphic.
- 7. If \mathfrak{a} is a fractional ideal, show that there is an \mathfrak{o} -module M so that $\mathfrak{a} \oplus M$ is a free \mathfrak{o} -module. Conclude that \mathfrak{a} is a projective \mathfrak{o} -module.

Part III: one additional problem.

Do problem 7 on page 353, thus showing that rings that satisfy the standard Dedekind properties have the defining property à la Lang.