Math 116

Extra problem on elliptic curves, due April 7

Let *E* be the elliptic curve considered in class on March 19, i.e., the curve with equation $y^2 = x^3 + x - 1$. Let *P* be the point (1,1). Using gp, I calculated *P*, 2P = P + P, $3P \dots$, 7*P* and wrote down some of the data on the board during my lecture on March 19. How did I do this? I entered the command

E = ellinit([0,0,0,1,-1]);

the three 0s are basically placeholders; 1 and -1 are the trailing coefficients of the cubic $x^3 + x - 1$. I then entered

P=[1,1]

and defined f(n) = ellpow(E,P,n). Then f(5), for example, gives the coordinates of $5 \cdot P$, which are 685/121 and -18157/1331. Type in "factor(1331)" and you'll see that it's 11^3 .

Now I want to start "reducing" $E \mod p$; this means that I want to consider E over \mathbf{F}_p for different primes p. When you type in the "ellinit" command, you get back a huge amount of data about E. The -496 early on in the string tells you that you have the right to reduce $E \mod p$ for all primes p that do not divide 496. We can take any $p \neq 2, 31$. For each such p, the group $E(\mathbf{F}_p)$ is finite, and its order is traditionally written $p+1-a_p$. As I mentioned on March 19, a theorem of Hasse tells you that $|a_p| \leq 2\sqrt{p}$. The values of a_p are found by the command "ellap(E,p)"; using it, we find that E has 5 points mod 9, 18 points mod 17, and so on and so forth. For instance $a_{17} = 0$, which gives the value 18 for the number of points of $E \mod 17$. (Because $a_p = 0$ here, E is said to have supersingular reduction mod 17.

The group $E(\mathbf{F}_{17})$ has 18 elements; how does the point (1,1) fit in?

"Q = [Mod(1,17),Mod(1,17)]"

introduces the point (1,1) on $E \mod 17$. The command "ellisoncurve(E,Q)" confirms that Q is a point on E. Type in "ellpow(E,Q,2)" and you see that 2Q = (2,14), where the entries are regarded mod 17. Similarly 9Q = (6,0) is a point of order 2 (because the *y*-coordinate is 0) but not the identity. Thus Q has order 18 on $E \mod 17$. In other words, (1,1) generates $E(\mathbf{F}_17)$, which we knew a priori to be cyclic. (All abelian groups of order 18 are cyclic!) Now we turn to the problem, which is basically to perform calculations like mine for the elliptic curve $E': y^2 = x^3 + 2x - 2$ and the point P := (1, 1). Note that $P \in E'(\mathbf{Q})$; that's how I chose the equation!

Specifically:

a. Calculate -P, 2P, 3P and 4P on this curve.

b. Find the order of $E'(\mathbf{F}_p)$ for p = 11, 13, 17, 19, 23, 29. (The primes of "bad reduction" for this curve are 2, 5 and 7.)

c. For p = 19 and p = 23, find the order of the point (1, 1) in the group $E'(\mathbf{F}_p)$.