
Math 115 Professor K. A. Ribet
Final Exam May 18, 1998

1 (6 points). Find a positive integer n such that n/3 is a perfect cube, n/4 is a perfect fourth
power, and n/5 is a perfect fifth power.

This was like a homework problem that you had early in the course. Try n = 3a2b5c and look for
congruences that are imposed on the three exponents. For example, a has to be 1 mod 3 and 0
mod 4 and mod 5; so a could be 40 (Chinese remainder situation). One answer to the question is
340230536, or 189963522797764512515625000000000000000000000000000000.

2 (5 points). Prove that there are no whole number solutions to the equation x2 − 15y2 = 31.

This is like one of the questions on the “practice final” from 1986. Work mod 31: It’s clear that y
can’t be divisible by 31, because then both x and y would be, and the LHS would be divisible by 312.
Hence if there’s a solution, we find that 15 is a square mod 31. It’s not, for instance from the point

of view of the Jacobi symbol—since both 15 and 31 are 3 mod 4, we have
(

15
31

)
= −

(
31
15

)
= −1.

3 (5 points). Find the number of solutions to the congruence x2 ≡ 9 mod 23 · 112.

This is a standard problem like that on the second midterm. You multiply the number of solutions
mod 8, which is 4, by the number of solutions mod 112, which you find by Hensel’s lemma. The
latter number is 2, so the answer is 8.

4 (7 points). Which positive integers m have the property that there is a primitive root mod m?
(Summarize what we know about this question, and why we know it. Your answer should be clear
enough that one could use it to decide immediately if there is a primitive root modulo (257)2,
4 · 661, 257 · 661, . . . .)

First, recall the situation when m is a power of a prime: If m = pt with p odd, then there’s always
a primitive root mod m. If m = 2t, then there’s no primitive root for t > 2, but there is a primitive
root if t = 1 or t = 2. If m is not a prime power, then there’s never a primitive root mod m except
when m has the form 2pt with p odd. The reason is as follows. Suppose that m = ab, with a and b
relatively prime and a, b > 1. A primitive root is a number mod m whose order is φ(m) = φ(a)φ(b).
You can think of the number as a pair (x, y) with x mod a and y mod b. The order of (x, y) is
the lcm of the orders of x and y, so it’s at most lcm(φ(a), φ(b)). In order that this order (sorry for
pun) be φ(a)φ(b), you need φ(a) and φ(b) to be relatively prime. This happens almost never, since
φ(n) is even unless it’s 1. In the case where φ(a), say, is 1, we clearly have a = 2. In this case,
i.e., m = 2b with b odd, it’s easy to see that there’s a primitive root mod m is there is one mod b.
(By the Chinese Remainder Theorem, the system of invertible numbers mod m is the same as the
system mod b.)

5 (6 points). Fermat showed that 237 − 1 is composite by finding a prime factor p of 237 − 1 which
lies between 200 and 300. Using your knowledge of number theory, deduce the value of p.

Well, we must have 237 ≡ 1 mod p. Thus the order of 2 mod p is 37. This implies that 37 divides
p−1, so that p is 1 mod 37. The multiples of 37 in the relevant range are 222, 259, and 296. Hence



p must be one of 223, 260, 297. The last two numbers are visibly not prime; the third, for instance,
is a multiple of 3. Hence p must be 223, which it is.

6 (7 points). The continued fraction expansion of
√

5 is 〈2, 4, 4, . . .〉. If

〈2, 4, 4, . . . , 4︸ ︷︷ ︸
99 4′s

〉 = h/k

(in lowest terms), calculate h2 − 5k2.

We have (h, k) = (h99, k99). A useful formula here is h2
n−dk2

n = (−1)n+1qn+1, which we apply with
n = 99 and d = 5. The answer is that h2 − 5k2 is q100. After some head-scratching, we remember
that qn = 1 precisely when n is a multiple of the period of the continued fraction, which is 1 in this
case. So h2 − 5k2 = 1.

7 (5 points). Prove that there are an infinite number of primes congruent to 3 mod 4.

We discussed stuff like this in class. If p1, . . . , pt are primes different from 3 which are 3 mod 4, we
consider N = 4p1 · · · pt + 3. This odd number is divisible by none of the pi and is prime to 3. The
primes which divide it cannot all be 1 mod 4, since then N would be 1 mod 4. Hence N is divisible
by some prime which is 3 mod 4 (and different from 3), and we can use this prime to augment our
list of such primes.

8 (6 points). Suppose that p = a2 + b2, where p is an odd prime number and a is odd. Show that(
a

p

)
= +1. (Use the Jacobi symbol.)

I liked this problem when I saw it discussed in office hours, some weeks back. The point is that(
a

p

)
=
(
p

a

)
=
(
b2

a

)
, the first equality because p is 1 mod 4 and the second because p is b2 mod a.

9 (8 points). Let a and b be positive integers. Show that φ(ab)φ(gcd(a, b)) = φ(a)φ(b) gcd(a, b).
(Example: If a = 12 and b = 8, the equation reads 32 · 2 = 4 · 4 · 4.)

This is a somewhat ugly problem, for which I semi-apologize. Maybe it’s best to realize that both
sides are multiplicative in a and b separately, so we can assume that a = pn and b = qm are prime
powers. If q 6= p, then the two sides are both obviously φ(a)φ(b). Hence we can assume that q = p
and just calculate! By symmetry, we can assume that n ≤ m, so that gcd(a, b) = pn. The LHS
is then (p − 1)pn+m−1 · (p − 1)pn−1, while the RHS is (p − 1)pn−1 · (p − 1)pm−1 · pn. If I did this
correctly, the two sides are equal.

10 (5 points). Find all solutions in integers y and z to the equation 62 + y2 = z2.

This is a very elementary question. Just write 36 = (z− y)(z + y). Clearly, (z − y) and (z + y) are
complementary factors of 36; given such factors a and b = 36/a, we can solve for y and z—provided

that a and b have the same parity. Indeed, if z−y = a and z+y = b, then z =
a+ b

2
and y =

b− a
2

.

The possibilities for a seem to be ±2, ±6, ±18. Thus, there should be 6 pairs (y, z). These are
(±8,±10), where the signs can be taken independently (4 poss. here), together with (0,±6).


