Math 115 Second Midterm Exam

This is a closed-book exam: no notes, books or calculators are allowed. Explain your answers in complete English sentences. No credit will be given for a "correct answer" that is not explained fully. In general, there is no need to simplify numerical answers.

1 (3 points). Calculate the number of primitive roots mod $35035 = 5 \cdot 7^2 \cdot 11 \cdot 13$.

There aren't any because 35035 is not on the short list of moduli for which there is a primitive root.

2 (6 points). What is the remainder when one divides the prime number 1234567891 by 11? What is the remainder when $11^{1234567890}$ is divided by 1234567891?

The answer to the first question is "7"; for this, use the fact that 10 is $-1 \mod 11$, so that 10^2 is $1 \mod 11$, 10^3 is $-1 \mod 11$, etc. The answer to the second question is "1"; this is Fermat's Little Theorem.

3 (5 points). Find a mod 29 inverse to the 2×2 matrix $\begin{pmatrix} 1 & 2 \\ 3 & 9 \end{pmatrix}$ mod 29.

The determinant of this matrix is 3, and an inverse to 3 mod 29 is 10 mod 29. You have to multiply this number (i.e., 10) by the matrix $\begin{pmatrix} 9 & -2 \\ -3 & 1 \end{pmatrix}$ mod 29 to get the answer, which seems to be

$$\begin{pmatrix} 3 & 9 \\ 28 & 10 \end{pmatrix}.$$

4 (9 points). If p is a prime, show that all prime divisors of $2^p - 1$ are congruent to 1 mod p. (For example, $2^{11} - 1 = 23 \cdot 89$ is divisible by the primes 23 and 89 and by no others.)

Let ℓ be a prime dividing $2^p - 1$. Then $2^p \equiv 1 \mod \ell$, and hence the order of $2 \mod \ell$ divides p. This order can't be 1, so the order is p. The order divides $\ell - 1$ as well; thus p divides $\ell - 1$, which is what is needed here. (If you just say that this is a theorem in the book, you will get some partial credit but not all that much.)

5 (7 points). Let μ be the Möbius function, and let τ be the function whose value on $n \ge 1$ is the number of divisors of n. Explain why the function $F(n) := \sum_{d|n} \mu(d)\tau(d)$ satisfies the relation

 $F(n_1n_2) = F(n_1)F(n_2)$ when $gcd(n_1, n_2) = 1$. Calculate $F(p^e)$ when p is a prime and e is a positive integer.

The point here is that F is the summatory function of a multiplicative function, so that F is multiplicative by a theorem that we proved in class. The relation $F(n_1n_2) = F(n_1)F(n_2)$ is the statement that F is multiplicative! Multiplicative functions are determined by their values on prime powers. We have $F(p^e) = \mu(1)\tau(1) + \mu(p)\tau(p) = 1 + (-1)2 = -1$ when p is prime and e is positive; hope I got that right.

NB: If you find mistakes in this write-up, please let me know by e-mail and I'll make the necessary changes.