
Math 114 Professor K.A. Ribet
Midterm Exam April 8, 2004

This exam was an 80-minute exam. It began at 3:40PM. There were 4 problems, for which
the point counts were 7, 8, 8 and 7. The maximum possible score was 30.

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3
players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet
of notes. Please write your name on each sheet of paper that you turn in; don’t trust
staples to keep your papers together. Explain your answers in full English sentences
as is customary and appropriate. Your paper is your ambassador when it is graded.

1. Suppose that K is a subfield of the complex field C and that α ∈ C is algebraic over K.
Let E be a field intermediate between K and K(α): K ⊆ E ⊆ K(α). Let

p(t) = td + ad−1t
d−1 + · · ·+ a1t + a0

be the minimal polynomial of α over E. Show that E = K(a0, a1, . . . , ad−1).

This was on the homework some weeks ago. Let F = K(a0, a1, . . . , ad−1), so that F ⊆ E.
The degree of K(α) over E is d because of the definition of p. On the other hand, α
satisfies p(t) over the field F , so that [K(α) : F ] ≤ d. We have, on the other hand,
[K(α) : F ] = [K(α) : E][E : F ] = d[E : F ], so we get [E : F ] ≤ 1, which implies that
E = F .

2. Let α =
√

3 +
√

5 ≈ 2.2882, and let K = Q(α). Let L be the splitting field of the
minimal polynomial of α. (a) Find the Galois group G = Gal(L : Q) of the extension
L : Q. (b) Find all subgroups of G. (c) For each subgroup H of G, identify the fixed field
of H.

We see that α satisfies the polynomial t4 − 6t2 + 4, whose roots are ±α,± 2
α

. Since these
roots can be expressed as polynomials in α, L = K. If we square the symmetric-looking
expressions α + 2/α and α− 2/α, we get 10 and 2, respectively. Thus, the field K, which
clearly contains

√
5, contains

√
2 as well. We have seen in previous computations and

homework problems that 2 is not a square in Q(
√

5). (We’ve seen enough similar things
that I won’t require you to prove this fact.) Hence the field Q(

√
2,
√

5), which is contained
in K, has degree 4. Since t4 − 6t2 + 4 is of degree 4, [K : Q] ≤ 4, and we get that
K = Q(

√
2,
√

5). This field has exactly 4 automorphisms, including the identity. If σ is an
automorphism of K, σ is determined by σ(α), which is one of the four roots of t4−6t2 +4.
The square of each of the automorphisms is the identity; for example, if τ sends α to 2/α,
then τ2 sends α to 2/τ(α) = α, so τ is the identity. It is clear, then, that G is a Klein
4-group (and not a cyclic group of order 4). If σ sends α to −α and τ is as described, then
α2 is fixed by σ, so the fixed field of σ is Q(

√
5). The quantity α + 2/α, whose square

is 10, is fixed by τ , so the fixed field of τ is Q(
√

10). The final non-identity element of G is
στ = τσ, which fixes α−2/α. Thus the fixed field of the group generated by στ is Q(

√
2).



3. Let L = Q(
√
−3,

3
√

2) be the splitting field of t3 − 2. How many different fields K
(other than Q and L) satisfy Q ⊂ K ⊂ L? For each field K, indicate the degree [K : Q]
and write K in the form Q(α).

This is a bread and butter sort of problem. The extension L : Q has degree 6; its Galois
group is isomorphic to the symmetric group S3, which is not all that complicated a group.
It has 3 subgroups of order 2 and 1 subgroup of order 3. By Galois theory, there are 3
fields K with [K : Q] = 3 and one field K with [K : Q] = 2. The cubic fields are Q(αωi)
where α is the real cube root of 2 and ω is a non-trivial cube root of 1. The quadratic field
is Q(ω). You can also label the 6 automorphisms by their effect on α and ω. Let σ be the
automorphism that sends α to αω and that fixes ω. Let τ be the automorphism that fixes
α and sends ω to ω−1 = ω2. Then σ has order 3 and τ has order 2. The elements of order
2 are τ , τσ, τσ2. They fix α, αω and αω2, respectively.

4. Suppose that p(t) is a monic polynomial over Q and let p′(t) be the derivative of p(t).
Suppose that 1 is the highest common factor of p(t) and p′(t) in the ring Q[t]. If n is the
degree of p, prove that p(t) has n distinct roots in C.

We did this in class—twice. The polynomial p(t) factors over C into a product of n factors
of the form t − α with α ∈ C. If the roots α are not all distinct, t − α appears as a
factor of both p and p′ in C[t]. This is impossible for various reasons. For example, by the
“hcf” assumption, we may find polynomials a(t) and b(t) with rational coefficients such
that 1 = a(t)p(t)+ b(t)p′(t). If t−α divides both p and p′, t−α divides 1, which we know
not to be true.
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