
Math 114 Professor K.A. Ribet

Midterm Exam Fabruary 19, 2004

This exam was an 80-minute exam. It began at 3:40PM. There were 4 problems, for which
the point counts were 6, 8, 9 and 7. The maximum possible score was 30.

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3
players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet
of notes. Please write your name on each sheet of paper that you turn in; don’t trust
staples to keep your papers together. Explain your answers in full English sentences
as is customary and appropriate. Your paper is your ambassador when it is graded.

1. Let n be a positive integer and let p be a prime number. Suppose that x is an integer
with gcd(x, n) = 1. Show that there is an integer y such that gcd(y, pn) = 1 and such that
y ≡ x mod n.

In class, we discussed the surjectivity of the natural map (Z/nZ)∗ → (Z/dZ)∗ when d is a
divisor of n. This took most of a period(!); it was related to a homework problem. With
mildly different notation, you have to prove surjectivity of the map (Z/nmZ)∗ → (Z/nZ)∗

when n, m ≥ 1. In class, I did this in an ugly way by writing out the prime factorizations
of n and m. A nicer technique would have been to note that, by induction, if you can do
this for m prime, you can do it for all m. The problem at hand is about the case where
m = p is prime.

In this situation, two things can happen. The first is where p is a divisor of n. In that case,
x is prime to pn because it is prime to n and we take simply y = x. The more interesting
situation is that where p does not divide n. Then using the Chinese Remainder Theorem,
we can find y so that y is congruent to x mod n and y is congruent to 1 (or some other
unit that we might like better) mod p. This y fits the bill.

Students have come up with the following efficient way of doing the problem: Start with
x, n and p as in the problem. If gcd(x, pn) = 1, choose y = x. Otherwise, x has a common
factor with np. The only possibility is that p divides x, but note that p cannot then divide
n because gcd(x, n) = 1. We set y = x + n, and this choice works. Indeed, y is clearly
congruent to x mod n. Also, p cannot divide y because it divides x but not n.

Find such a y if n = 15, p = 7 and x = 7.

My purpose is asking you about this example was to get you to think about the abstract
problem in a concrete situation. The point is that we can’t take y = x because x is not
prime to p. We have to take a y that is congruent to 7 mod 15 and is prime to 7. We
could certainly take y = 22.



2. Let p be a prime number. Prove that the polynomial

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xp

p!

is irreducible over Q.

The presence of a prime number in the problem suggests that we might want to use
Eisenstein’s criterion. Multiply the polynomial by p! to get a monic polynomial with
integer coefficients. The coefficients of the resulting polynomial are 1, p, p(p− 1), and so
on; the constant coefficient is p!. Eisenstein’s criterion applies beautifully; note that p! is
divisible by p but not by p2.

Prove that x4 + x3 + x2 + x + 1 is irreducible over Z/2Z (the field of integers mod 2) and
that 1234567x4 − 98765x3 + 357x2 − x + 17 is irreducible over Q.

The polynomial x4 + x3 + x2 + x + 1 has no root in Z/2Z: plug in 0 or 1 and you get
1 as the value. This does not imply that the polynomial is irreducible; it could plausibly
factor as a product of two irreducible quadratics. In fact, the only irreducible quadratic
over Z/2Z is x2 + x + 1; all others have 0 or 1 as a root. The only possible factorization,
then is x4 + x3 + x2 + x + 1 = (x2 + x + 1)2. However, when 2 = 0, the square of a sum is
the sum of the squares, so (x2 + x + 1)2 = x4 + x2 + 1, which is not x4 + x3 + x2 + x + 1.
We conclude that x4 + x3 + x2 + x + 1 is indeed irreducible over Z/2Z. The statement
about 1234567x4 − 98765x3 + 357x2 − x + 17 follows when you combine two facts. The
first is that a polynomial over Z factors over Z if it factors over Q; this is Gauss’s lemma.
The second is that a polynomial that factors over Z factors over Z/pZ for every p; this
is completely obvious. Thus a polynomial over Z is irreducible if there is a prime modulo
which it is irreducible. We mentioned this in class several times, and now here it is on an
exam.

3. Let α ≈ −2.9196 be the real root of the polynomial f(x) := x3 + 2x2 − 2x + 2. Write
1

α + 3
as a polynomial in α.

There are presumably several ways to do this problem. Here’s how I did it while we were
setting in the exam room. If δ = α + 3, then f(δ − 3) = 0. If you plug δ − 3 in to f and
expand, you get that 0 = δ3 − 7δ2 + 13δ − 1, so that 1/δ = δ2 − 7δ + 13. If you remember
that δ = α + 3 and you expand, you get that 1/δ = α2 − α + 1.

Let β be a complex root of the polynomial f(x− 7) = x3 − 19x2 + 117x− 229. Show that
the fields Q(α) and Q(β) are isomorphic.

Let γ = β+7. Then γ and α are roots of the same polynomial, namely f . This polynomial
is irreducible by Eisenstein’s criterion. Hence Q(α) and Q(γ) are isomorphic to each other;
each is isomorphic to Q[x]/(f(x)). On the other hand, the fields Q(β) and Q(γ) are visibly
equal. Hence Q(β) and Q(α) are isomorphic.
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4. For the cubic polynomial y3 + py + q = 0, Cardano’s formula reads

y =
3
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.

When p = −1 and q = 0, the polynomial is y3 − y, which you can solve without the
formula (I hope!). Exhibit choices of roots in the formula that lead to the three values −1,
0 and +1 for the expression
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.

Cardano tells us that every root of y3−y may be written in the form
3
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27

+
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√
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.

Thus each of 0, 1 and −1 may be written in this form. The question is to explain how this

is possible. First of all, in the formula, the quantities

√
−1
27

and −
√
−1
27

are supposed to

represent the two different square roots of −1/27. There is no way to distinguish between

them. The two square roots are ± i

3
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3
. When we take the cube roots of these numbers,

we get
1√
3

times the cube roots of ±i. One cube root of −i is clearly i. The others are
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. One cube root of i is −i. The others are

∓
√
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2
. Now we are

in good shape. We can take the cube roots of ± i
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3
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−i√
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3
, which sum to 0.

We can take the cube roots to be
−
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, which sum to −1. Finally, if we

take the cube roots to be
√
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, their sum will be 1.
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