Math 114

Professor Kennneth A. Ribet Final Exam May 14, 1992

1 5 points	Find the sum of the roots of $f(X) = X^9 - 5X^8 + 12X^7 - 6X^6 + 42$. Find the sum of the squares of these roots.
2 11 points 4 pts.	Let $G = \mathbf{GL}(2, \mathbb{F}_p)$ be the group of two-by-two invertible matrices with coefficients in \mathbb{F}_p , under matrix multiplication. a. Suppose that $P \subseteq G$ is a <i>p</i> -Sylow subgroup of <i>G</i> and that $N(P) = \{g \in G \mid gPg^{-1} = P\}$ is its normalizer. What general formula gives the number of <i>p</i> -Sylow subgroups of <i>G</i> in terms of the orders of <i>G</i> and of $N(P)$?
4 pts.	b. Find a specific p -sylow subgroup P of G , and determine its nor- malizer
3 pts.	c. Sketch the method we used in class to calculate the order of G .
3 11 points 5 pts. 4 pts. 2 pts.	 Let f(X) ∈ K[X] be an irreducible polynomial of degree n over a field K. Let E = K[X]/(f(X)). a. Prove that E is a field: explain how to find the inverse of a non-zero element of E. b. Suppose now that K = F_p is the field with p elements. Let G be the group of field automorphisms of E. What sort of group is G? (Is it finite? simple? abelian? Can its order be determined from p and n?) c. If X³ + aX + b is irreducible over F_p, prove that Δ = -4a³ - 27b² has a square root in F_p.
A 7 points	Suppose that $f(X)$ is an irreducible polynomial of degree d over a field K . Let L be an extension of K of degree n , where $(n, d) = 1$. Show that $f(X)$ remains irreducible when considered as an element of $L[X]$. [Hint: use the Tower Law.]
5 pts.	Let K be the field $\mathbb{Q}(e^{\frac{2\pi i}{n}})$, where n is a positive integer. Let α be a complex number whose nth power lies in K, and let $L = K(\alpha)$. a. Show that L/K is a Galois extension. b. Prove that $\operatorname{Gal}(L/K)$ is cyclic of order dividing n.

6	Let N be a finite normal extension of K , and let E be a subfield of N
10 points	which contains K. Set $n = [E : K]$, and denote by Σ the set of K-
	monomorphisms $E \to N$. Also, let $G = \operatorname{Aut}_K(E)$ be the group of
	K-automorphisms of the field E .
3 pts.	a. What condition on the extension E/K is equivalent to the condition that Σ has exactly <i>n</i> elements?
3 pts.	b. What condition on the extension E/K is equivalent to the condi-
	tion $\Sigma = G$?
4 pts.	c. Let F be the set of elements of E which are left fixed by all elements
	of G. Is E/F always a Galois extension?
$\overline{7}$	
1	Suppose that $E \subset \mathbb{C}$ is the splitting field of a (non-constant) irreducible
13 points	polynomial $f(X) \in \mathbb{Q}[X]$. Let G be the Galois group $\operatorname{Gal}(E/\mathbb{Q})$. Let
	α and β be roots of f in E , and set $\Omega = \{ \sigma \in G \mid \sigma(\alpha) = \beta \}.$
4 pts.	a. Is Ω necessarily non-empty?
3 pts.	b. Is Ω a subgroup of G ?
3 pts.	c. How does the size of Ω vary if β changes and α stays fixed?
3 pts.	d. Suppose that G is abelian. Prove that α is a real number if and
	only if β is a real number.
8	Let L/K be a finite Galois extension with Galois group G. For $x \in L$
O 8 points	Let L/K be a finite Galois extension, with Galois group G. For $x \in L$, set $N/K := \prod_{i=1}^{n} (\sigma x)$
o points	$\int \frac{\partial G}{\partial r} = \prod_{\sigma \in G} (\sigma x).$
4 pts.	a. Show $\mathcal{N} x \in K$.
4 pts.	b. If L is a finite field, show that \mathcal{N} is the map $x \mapsto x^i$, where
	$i = (L^* : K^*).$

There are 75 points on this exam. Hope to see you again!