
Mathematics 113 Professor K. A. Ribet

Last Midterm Exam October 31, 2013

Afternoon Edition

Please put away all books, calculators, cell phones and other devices. You may con-
sult a single two-sided sheet of notes. Please write carefully and clearly in complete
sentences. Your explanations are your only representative when your work is being
graded.

The problems have equal weight.

1. Find the number of conjugates of (1 2 3)(4 5 6) in A6. (For this problem, and the ones
below, be sure to explain your work in complete English sentences.)

In S6, the conjugates of σ = (1 2 3)(4 5 6) are precisely the permutations that have the same
cycle type as σ. To make such a permutation, you lay down the six numbers 1→ 6 in some
order. There are 6! ways to do this, but: each 3-cycle can be written in three ways, and
the order of the two 3-cycles doesn’t matter. Accordingly, there are 6!/(3 · 3 · 2) = 40 such
permutations. Still in S6, the centralizer of σ thus has 18 elements. Among them is the
permutation that swaps 1 with 4, 2 with 5 and 3 with 6. This permutation is (1 4)(2 5)(3 6);
it’s odd. Thus the situation is like many that we discussed in class. Namely, when we pass
to A6, the group order gets halved but so does the centralizer. Accordingly, σ has the
same number of conjugates in A6 as it does in S6. Thus the answer is “40.”

2. Let p be an odd prime, and let G be a dihedral group D2n. Show that all p-Sylow
subgroups of G are cyclic. Find the number of such subgroups.

There is a unique p-Sylow (which is therefore normal): it’s the p-part of the cyclic group
generated by r, which has order n. Specifically, write n as pit, where t is prime to p. Then
the p-Sylow is the cyclic group generated by rt, which has order pi. [Note: if i = 0, one
shouldn’t technically speak of the p-Sylow subgroup of G because p-Sylows are supposed
to be non-trivial. If you say that the number of p-Sylows is 0 in the case where p doesn’t
divide n, you’ll get full credit and some extra respect.]

3. Suppose that G is a finite group and that H is a subgroup of G. Let N = NG(H) be
the normalizer of H.

a. Let H1 = H,H2, H3, . . . ,Hk be the distinct conjugates of H in G. Prove the formula

k∑
i=1

|Hi| = |H| · (G : N) = |G|/(N : H).

All the conjugates have the same number of elements, so the sum is k · |H|. How do we
know that k = (G : N)? It’s a special case of the general rule that the orbit of x ∈ X



is G/Gx when G acts on a set X and Gx is the stabilizer of an element x of X. Here, X
is the set of conjugates of H, and the orbit of H consists of the entire set (by definition).
Now (G : H) = (G : N)(N : H) (e.g., because all three indices can be written as fractions
in a way that makes this formula obvious). Writing (G : H) = |G|/|H|, we get the equality
of the middle expression and the expression on the right.

The takeaway here is that the sum on the left is ≤ |G| because the denominator (N : H)
is a positive integer.

b. If H 6= G, show that
k⋃

i=1

Hi 6= G.

The sum of the sizes of the sets on the left is at most the size of G. Hence the union on
the left can be all of G only if the union is disjoint. But the union isn’t disjoint because
1 (the identity of G) is in all the groups Hi and because there are at least two groups Hi

(in view of the assumption that H isn’t all of G).

4. Let G be a group (possibly infinite) and let H be a subgroup of G for which the set
G/H is finite. Use the action of G by left multiplication on G/H to show that there is a
normal subgroup N of G such that N ⊆ H and such that G/N is a finite group.

The indicated action gives you a homomorphism

ϕ : G −→ SG/H .

Let N be the kernel of ϕ. We have N ⊆ H because N is the group of elements of G that
fix all elements of G/H, while H is the group of elements that fix the coset H = 1 · H
in the set G/H. By the first isomorphism theorem, we have an injection G/N ↪→ SG/H .
Since G/H is a finite set, the symmetric group SG/H is finite. Thus G/N is a finite group.

5. Let G be a group.

a. For each g ∈ G, let σg be the inner automorphism “conjugation by g.” Suppose that
ϕ is an automorphism of G. Establish the formula ϕσgϕ

−1 = σϕ(g).

Let x be an element of G. We have

(ϕσgϕ
−1)(x) = ϕ

(
gϕ−1(x)g−1

)
= ϕ(g)ϕ(ϕ−1(x))ϕ(g−1) = ϕ(g)xϕ(g)−1 = σϕ(g)(x).

b. If G has trivial center and ϕ commutes with all σg, show that ϕ is the identity map.

By part (a), if ϕ commutes with all σg, then σg = σϕ(g) for all g ∈ G. Because G has trivial
center, two elements a and b of G are equal if and only if the automorphisms σa and σb
are equal. Indeed, if σa = σb, then you’ll find by messing around that ab−1 commutes
with all elements of G and is therefore the identity. Accordingly, we have ϕ(g) = g for all
g ∈ G, which shows of course that ϕ is the identity map.


