Friday Night Edition 237 Hearst Gym

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Your explanations are your only representative when your work is being graded.

Name: Ken Ribet SID: Very Rough Solutions

Problem	Value	Your Score
1	6	
2	4	
3	8	
4	5	
5	6	
6	6	
7	5	
Total	40	

1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that H is a subgroup of G. Prove that the index $(H : (H \cap N))$ divides the index (G : N). Deduce that if H is a subgroup of A_n , then $(H : (H \cap A_n)) \leq 2$.

See problem 2(a) on the second midterm that the other class took. The group $H/(H \cap N)$ is a subgroup of G/N, so the order of the subgroup divides the order of the ambient group. The "Deduce" part comes from the choices $G = S_n$, $N = A_n$.

2. Write (12)(123)(1234)(12345) as a product of disjoint cycles in S_5 .

I presume that you all know how to do this. To check your work, do it again. Note that we compose from the right to the left; if you composed in the order order, you lost points.

3. Suppose that G is a group of order $3825 = 3^2 \cdot 5^2 \cdot 17$.

a. Show that G has a unique subgroup N of order 17.

The number of 17-Sylows divides $3^2 \cdot 5^2$ and is 1 mod 17. You can check, I hope, that 1 is the only divisor of $3^2 \cdot 5^2$ that is 1 mod 17.

b. Show that the group N in part (a) is a subgroup of the *center* of G.

We have to show that the set of elements of G that commute with all elements of N is the entire group G. This set is the subgroup $C_G(N)$ of G. It contains N because N is cyclic, and therefore abelian. We need to show that its order is divisible by 9 and by 25; if so, its order will be divisible by the order of G and we'll be done. The arguments for 9 and for 25 are analogous. Take a 3-Sylow subgroup T of G. To show that T centralizes N is to show that the action of T on N by conjugation is the trivial action. This action is given a priori by some homomorphism

$$\phi: T \to \operatorname{Aut} N,$$

where Aut N is the group of automorphisms of the group N. But Aut N is isomorphic to $(\mathbf{Z}/17\mathbf{Z})^*$, which has order 16. Since 16 is prime to 9, ϕ must be the trivial homorphism.

4. Let R be a commutative ring with identity. When n is an integer, write n_R for the element of R corresponding to n. For example, $3_R = 1 + 1 + 1$, where each "1" in the equation is the identity element of R. If n and m are relatively prime integers, show that the ideal (n_R, m_R) in R is all of R.

The point is that we can write 1 = an + bm, where a and b are integers. (That's basically what you should think of doing when someone tells you that a gcd is 1.) Then the ideal in question contains the *R*-element analogous to an + bm, which is the element 1 of *R*. An ideal containing 1 is the full ring *R*.

5. Suppose that G is a finite group of p-power order (where p is a prime number).

a. Let A be a finite G-set (i.e., a set with an action of G). Prove the congruence $|A| \equiv |A^G| \mod p$, where A^G is the set of elements of A that are fixed by all elements of G.

The action of G on A divides A into disjoint orbits. All orbits have p-power order. The orbits of size > 1 have sizes divisible by p. The orbits of size 1 consist of the fixed points. The congruence to be established (which is surely explained in the book) then follows.

b. Suppose that $N \neq \{1\}$ is a normal subgroup of G. Show that $N \cap Z(G)$ is not the trivial group.

Let G act on N by conjugation. The fixed set N^G is the indicated intersection $N \cap Z(G)$. Its size is congruent mod p to the number of elements of N, which is a power of p bigger than 1. Hence the number of elements of $N \cap Z(G)$ is divisible by p. Accordingly, this intersection is not the trivial group.

6. Find the gcd of 11 + 7i and 18 + i in $\mathbf{Z}[i]$.

We can do this as in the Thursday "class" last week (RRR Week). The norms of these elements are 170 and 325; it's pretty clear that gcd(170, 325) = 5. Hence the gcd of 11 + 7i

and 18 - i has norm dividing 5, so it can be only one of the following three elements: 1, 2 + i, 2 - i (up to units). Now $\frac{18 + i}{2 - i} = 7 + 4i$ and similarly $\frac{11 + 7i}{2 - i} = 3 + 5i$. Hence the gcd is 2 - i.

See

for some perspective.

7. Let R be a commutative ring with identity. Suppose that for each $a \in R$ there is an integer n > 1 such that $a^n = a$. Prove that every prime ideal of R is a maximal ideal.

Let P be a prime ideal of R. In the ring R/P, we still have the property that is "enjoyed" by R: for each $x \in R/P$, there is an $n \ge 2$ so that $x^n = x$. If x is non-zero, we have $x^{n-1} = 1$ because R/P is an integral domain. Then $x \cdot x^{n-2} = 1$, so that x^{n-2} is an inverse to x. (Special case: if n = 2, then x = 1, and indeed $1 = x^{n-2}$ is an inverse to x.) We conclude that R/P is a field—every non-zero element has an inverse—and that P is maximal.