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Please put away all books, calculators, cell phones and other devices. You may con-
sult a single two-sided sheet of notes. Please write carefully and clearly in complete
sentences. Your explanations are your only representative when your work is being
graded.
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Problem Value Your Score
1 6
2 4
3 8
4 5
5 6
6 6
7 5

Total 40

1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that H is a
subgroup of G. Prove that the index (H : (H ∩N)) divides the index (G : N). Deduce
that if H is a subgroup of An, then (H : (H ∩An)) ≤ 2.

See problem 2(a) on the second midterm that the other class took. The group H/(H ∩N
is a subgroup of G/N , so the order of the subgroup divides the order of the ambient group.
The “Deduce” part comes from the choices G = Sn, N = An.

2. Write (1 2)(1 2 3)(1 2 3 4)(1 2 3 4 5) as a product of disjoint cycles in S5.

I presume that you all know how to do this. To check your work, do it again. Note that
we compose from the right to the left; if you composed in the order order, you lost points.

3. Suppose that G is a group of order 3825 = 32 · 52 · 17.

a. Show that G has a unique subgroup N of order 17.

The number of 17-Sylows divides 32 · 52 and is 1 mod 17. You can check, I hope, that 1 is
the only divisor of 32 · 52 that is 1 mod 17.



b. Show that the group N in part (a) is a subgroup of the center of G.

We have to show that the set of elements of G that commute with all elements of N is the
entire group G. This set is the subgroup CG(N) of G. It contains N because N is cyclic,
and therefore abelian. We need to show that its order is divisible by 9 and by 25; if so,
its order will be divisible by the order of G and we’ll be done. The arguments for 9 and
for 25 are analogous. Take a 3-Sylow subgroup T of G. To show that T centralizes N is to
show that the action of T on N by conjugation is the trivial action. This action is given
a priori by some homomorphism

φ : T → AutN,

where AutN is the group of automorphisms of the group N . But AutN is isomorphic to
(Z/17Z)∗, which has order 16. Since 16 is prime to 9, φ must be the trivial homorphism.

4. Let R be a commutative ring with identity. When n is an integer, write nR for the
element of R corresponding to n. For example, 3R = 1 + 1 + 1, where each “1” in the
equation is the identity element of R. If n and m are relatively prime integers, show that
the ideal (nR,mR) in R is all of R.

The point is that we can write 1 = an+ bm, where a and b are integers. (That’s basically
what you should think of doing when someone tells you that a gcd is 1.) Then the ideal in
question contains the R-element analogous to an + bm, which is the element 1 of R. An
ideal containing 1 is the full ring R.

5. Suppose that G is a finite group of p-power order (where p is a prime number).

a. Let A be a finite G-set (i.e., a set with an action of G). Prove the congruence
|A| ≡ |AG| mod p, where AG is the set of elements of A that are fixed by all elements
of G.

The action of G on A divides A into disjoint orbits. All orbits have p-power order. The
orbits of size > 1 have sizes divisible by p. The orbits of size 1 consist of the fixed points.
The congruence to be established (which is surely explained in the book) then follows.

b. Suppose that N 6= {1} is a normal subgroup of G. Show that N ∩ Z(G) is not the
trivial group.

Let G act on N by conjugation. The fixed set NG is the indicated intersection N ∩Z(G).
Its size is congruent mod p to the number of elements of N , which is a power of p bigger
than 1. Hence the number of elements of N ∩ Z(G) is divisible by p. Accordingly, this
intersection is not the trivial group.

6. Find the gcd of 11 + 7i and 18 + i in Z[i].

We can do this as in the Thursday “class” last week (RRR Week). The norms of these
elements are 170 and 325; it’s pretty clear that gcd(170, 325) = 5. Hence the gcd of 11+7i



and 18 − i has norm dividing 5, so it can be only one of the following three elements: 1,

2 + i, 2− i (up to units). Now
18 + i

2− i
= 7 + 4i and similarly

11 + 7i

2− i
= 3 + 5i. Hence the

gcd is 2− i.

See

http://math.stackexchange.com/questions/82350/gcd-of-gaussian-integers

for some perspective.

7. Let R be a commutative ring with identity. Suppose that for each a ∈ R there is an
integer n > 1 such that an = a. Prove that every prime ideal of R is a maximal ideal.

Let P be a prime ideal of R. In the ring R/P , we still have the property that is “enjoyed”
by R: for each x ∈ R/P , there is an n ≥ 2 so that xn = x. If x is non-zero, we have
xn−1 = 1 because R/P is an integral domain. Then x · xn−2 = 1, so that xn−2 is an
inverse to x. (Special case: if n = 2, then x = 1, and indeed 1 = xn−2 is an inverse to x.)
We conclude that R/P is a field—every non-zero element has an inverse—and that P is
maximal.


