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Problem Max Points Your Score
1 4
2 5
3 7
4 4
5 5
6 5
7 5
8 5

Total 40

1. Find the smallest positive integer n for which the alternating group An has an element
of order 1000.

Notice that 1000 = 103 = 2353. We can try to multiply an 8-cycle by a 125-cycle, but the
8-cycle will be odd and the 125-cycle will be even. I suspect that the best that we can do
is to multiply together disjoint cycles of lengths 8, 2 and 125. My answer seems to be 135.
I wonder if this is correct! I’ll find out soon enough when I grade the papers. If one can
do better, surely a student will tell me how.

2. Show that every group of order 12 has a normal Sylow subgroup.

This is pretty standard, so maybe you’ve seen the problem before. The number of 3-Sylows
divides 4 and is 1 mod 3. Therefore it’s either 1 or 4. If it’s 1, there’s a normal 3-Sylow.
If not, there are 4 × 2 = 8 elements of order 3 in the group. This leaves four elements of
order other than 3. The elements of a 2-Sylow (which has order 4) are of order 6= 3. Thus
there can be only one 2-Sylow.



3. Let R be an integral domain.

a. Explain what it means for an element of R to be prime and what it means for an
element of R to be irreducible.

These notions are defined in the book.

b. Show that 2 is an irreducible element, but not a prime element, of the ring Z[
√
−3].

As I explained on a couple occasions in class, we have 2 · 2 = (1 +
√
−3)(1 −

√
−3) in

the ring. Clearly 2 cannot be prime because it divides neither factor on the right-hand
side of the equation (but does divide their product, which is 4). On the other hand, 2 is
irreducible because there is no element of norm 2 in the ring. (For details, see your class
notes.)

c. Suppose that all ideals of R are principal. If r is an irreducible element of R, show
that the ideal (r) is maximal and that r is a prime element of R.

If r is irreducible and I is an ideal of R containing (r), then I = (a) for some a ∈ R.
Because r ∈ (r) ⊆ (a), r is a multiple ab of a. The equation r = ab forces a or b to be
a unit because r is irreducible. In one case, I = R; in the other, I = (r). Thus (r) is a
maximal ideal, which implies that it is a prime ideal. That (r) is a prime ideal means that
r is a prime element, essentially by definition.

4. Let A and B be subsets of a finite group G for which |A| + |B| > |G|. Let g be an
element of G, and let gB−1 = { gb−1 | b ∈ B }. Show that A∩ gB−1 6= ∅ and conclude that
g = ab for some a ∈ A, b ∈ B.

See http://math.berkeley.edu/~ribet/113/OldExams/2003 mt2 spoiler.pdf, # 5.

5. This problem concerns n× n matrices of real numbers.

a. Suppose that M is such a matrix and that X and Y are n× n matrices with a single
non-zero entry, which is equal to 1. Describe the product XMY in terms of the entries
of M and the positions of the non-zero entries in X and Y .

If X has a “1” in position ab and Y has a “1” in position cd, then XYM has mbc in
position ad; all other entries in the product are 0. (I hope that this is correct!)

b. Show that the ring of n × n matrices of real numbers has no two-sided ideals other
than (0) and the whole ring.

Let I be a 2-sided ideal of the indicated ring. Suppose I is non-zero and let M be a non-
zero element of I. Say that the entry mbc is non-zero. Multiplying M be an appropriate
scalar matrix, we can and do assume that mbc = 1. Then the various products XMY



have their unique 1’s in all possible positions ad. By taking linear combinations of such
products, we can get all elements of R inside I.

6. Let C be a cyclic group of order pn, where p is an odd prime number and n is a positive
integer. Show that C has a unique automorphism of order 2.

As we discussed in class numerous times, if C is cyclic of order N , then the group of
automorphisms of C is (Z/NZ)∗. The problem is to show that (Z/pnZ)∗ has a unique
element of order 2 (namely, −1). An element of order dividing 2 (i.e., of order 1 or 2)
corresponds to an integer x satisfying x2 ≡ 1 mod pn. Since, in particular, p will divide
x2 − 1 = (x − 1)(x + 1), we have x ≡ 1 mod p or x ≡ −1 mod p. If x ≡ 1 mod p, then
p does not divide x + 1. Hence the divisibily by pn of the product (x − 1)(x + 1) implies
that pn divides x − 1, i.e., that x is 1 mod pn. In this case, the element of (Z/pnZ)∗

that we are dealing with is 1, which has order 1. If x ≡ −1 mod p, then by an analogous
argument we get x ≡ −1 mod pn. Of course, in this case the unique automorphism of
order 2 of C is the map “inversion” or “multiplication by −1,” depending on whether C
is written multiplicatively or additively.

7. Suppose that I and J are ideals of a commutative ring R with the property that the
canonical map

R −→ R/I ×R/J

is surjective (“onto”). Show that I and J are comaximal in the sense that I + J = R.

Take r ∈ R that maps to (0, 1) under the canonical map. We have r + I = 0 + I and
r+ J = 1 + J . The first equation means that r is an element of I. The second means that
1− r is an element of J , say s. Then we have 1 = r + s with r ∈ I, s ∈ J . It follows that
the ideal I + J contains 1 and must therefore be all of R.

8. Let n be a positive integer. Let R be the ring Cn whose elements are n-tuples of complex
numbers and whose ring operations are componentwise addition and multiplication. For
each i, 1 ≤ i ≤ n, let πi : R→ C be the ith projection (x1, . . . , xn) 7→ xi.

a. Show that the kernel of πi is a maximal ideal of R.

By the first, isomorphism theorem, R/ kerπi is isomorphic to the image of πi. This image
is clearly all of C, which is a field.

b. Prove that each maximal ideal of R is the kernel of πi for some i.

Let I be a maximal ideal of R. Then I is a prime ideal. Also, I isn’t 0 because each of the
kerπi in part (a) are proper ideals of R that are bigger than 0. In R = Cn, let e1, . . . , en
be the “standard basis vectors” of linear algebra. For each pair of indices i and j, we have
eiej = 0 ∈ I. Hence for each pair (i, j), either ei or ej is in I. Since e1 + · · ·+ en = 1 ∈ R,
it is clear that I cannot contain all of the ej (because I isn’t all of R). Let’s say specifically



that ei is not in I. Then, as explained above, all of the ej with j 6= i are in I. By taking
linear combinations of these elements, we see that I contains all (a1, . . . , an) with ai = 0.
But these elements constitute kerπi! Hence I contains kerπi and must be equal to kerπi
because I is proper and the kernel is maximal.


