Mathematics 113 Yet Another Exam Professor K. A. Ribet December 18, 2013

Morning Edition 9 Evans Hall

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Your explanations are your only representative when your work is being graded.

Name: Ken Ribet

SID: Rough solutions

Problem	Max Points	Your Score
1	4	
2	5	
3	7	
4	4	
5	5	
6	5	
7	5	
8	5	
Total	40	

1. Find the smallest positive integer n for which the alternating group A_n has an element of order 1000.

Notice that $1000 = 10^3 = 2^3 5^3$. We can try to multiply an 8-cycle by a 125-cycle, but the 8-cycle will be odd and the 125-cycle will be even. I suspect that the best that we can do is to multiply together disjoint cycles of lengths 8, 2 and 125. My answer seems to be 135. I wonder if this is correct! I'll find out soon enough when I grade the papers. If one can do better, surely a student will tell me how.

2. Show that every group of order 12 has a normal Sylow subgroup.

This is pretty standard, so maybe you've seen the problem before. The number of 3-Sylows divides 4 and is 1 mod 3. Therefore it's either 1 or 4. If it's 1, there's a normal 3-Sylow. If not, there are $4 \times 2 = 8$ elements of order 3 in the group. This leaves four elements of order other than 3. The elements of a 2-Sylow (which has order 4) are of order \neq 3. Thus there can be only one 2-Sylow.

3. Let R be an integral domain.

a. Explain what it means for an element of R to be *prime* and what it means for an element of R to be *irreducible*.

These notions are defined in the book.

b. Show that 2 is an irreducible element, but not a prime element, of the ring $\mathbb{Z}[\sqrt{-3}]$.

As I explained on a couple occasions in class, we have $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ in the ring. Clearly 2 cannot be prime because it divides neither factor on the right-hand side of the equation (but does divide their product, which is 4). On the other hand, 2 is irreducible because there is no element of norm 2 in the ring. (For details, see your class notes.)

c. Suppose that all ideals of R are principal. If r is an irreducible element of R, show that the ideal (r) is maximal and that r is a prime element of R.

If r is irreducible and I is an ideal of R containing (r), then I = (a) for some $a \in R$. Because $r \in (r) \subseteq (a)$, r is a multiple ab of a. The equation r = ab forces a or b to be a unit because r is irreducible. In one case, I = R; in the other, I = (r). Thus (r) is a maximal ideal, which implies that it is a prime ideal. That (r) is a prime ideal means that r is a prime element, essentially by definition.

4. Let A and B be subsets of a finite group G for which |A| + |B| > |G|. Let g be an element of G, and let $gB^{-1} = \{ gb^{-1} | b \in B \}$. Show that $A \cap gB^{-1} \neq \emptyset$ and conclude that g = ab for some $a \in A, b \in B$.

See http://math.berkeley.edu/~ribet/113/OldExams/2003_mt2_spoiler.pdf, # 5.

5. This problem concerns $n \times n$ matrices of real numbers.

a. Suppose that M is such a matrix and that X and Y are $n \times n$ matrices with a single non-zero entry, which is equal to 1. Describe the product XMY in terms of the entries of M and the positions of the non-zero entries in X and Y.

If X has a "1" in position ab and Y has a "1" in position cd, then XYM has m_{bc} in position ad; all other entries in the product are 0. (I hope that this is correct!)

b. Show that the ring of $n \times n$ matrices of real numbers has no two-sided ideals other than (0) and the whole ring.

Let I be a 2-sided ideal of the indicated ring. Suppose I is non-zero and let M be a non-zero element of I. Say that the entry m_{bc} is non-zero. Multiplying M be an appropriate scalar matrix, we can and do assume that $m_{bc} = 1$. Then the various products XMY

have their unique 1's in all possible positions ad. By taking linear combinations of such products, we can get all elements of R inside I.

6. Let C be a cyclic group of order p^n , where p is an odd prime number and n is a positive integer. Show that C has a unique automorphism of order 2.

As we discussed in class numerous times, if C is cyclic of order N, then the group of automorphisms of C is $(\mathbb{Z}/N\mathbb{Z})^*$. The problem is to show that $(\mathbb{Z}/p^n\mathbb{Z})^*$ has a unique element of order 2 (namely, -1). An element of order dividing 2 (i.e., of order 1 or 2) corresponds to an integer x satisfying $x^2 \equiv 1 \mod p^n$. Since, in particular, p will divide $x^2 - 1 = (x - 1)(x + 1)$, we have $x \equiv 1 \mod p$ or $x \equiv -1 \mod p$. If $x \equiv 1 \mod p$, then p does not divide x + 1. Hence the divisibily by p^n of the product (x - 1)(x + 1) implies that p^n divides x - 1, i.e., that x is 1 mod p^n . In this case, the element of $(\mathbb{Z}/p^n\mathbb{Z})^*$ that we are dealing with is 1, which has order 1. If $x \equiv -1 \mod p$, then by an analogous argument we get $x \equiv -1 \mod p^n$. Of course, in this case the unique automorphism of order 2 of C is the map "inversion" or "multiplication by -1," depending on whether Cis written multiplicatively or additively.

7. Suppose that I and J are ideals of a commutative ring R with the property that the canonical map

$$R \longrightarrow R/I \times R/J$$

is surjective ("onto"). Show that I and J are comaximal in the sense that I + J = R.

Take $r \in R$ that maps to (0,1) under the canonical map. We have r + I = 0 + I and r + J = 1 + J. The first equation means that r is an element of I. The second means that 1 - r is an element of J, say s. Then we have 1 = r + s with $r \in I$, $s \in J$. It follows that the ideal I + J contains 1 and must therefore be all of R.

8. Let n be a positive integer. Let R be the ring \mathbb{C}^n whose elements are n-tuples of complex numbers and whose ring operations are componentwise addition and multiplication. For each $i, 1 \leq i \leq n$, let $\pi_i : R \to \mathbb{C}$ be the *i*th projection $(x_1, \ldots, x_n) \mapsto x_i$.

a. Show that the kernel of π_i is a maximal ideal of R.

By the first, isomorphism theorem, $R/\ker \pi_i$ is isomorphic to the image of π_i . This image is clearly all of **C**, which is a field.

b. Prove that each maximal ideal of R is the kernel of π_i for some i.

Let *I* be a maximal ideal of *R*. Then *I* is a prime ideal. Also, *I* isn't 0 because each of the ker π_i in part (a) are proper ideals of *R* that are bigger than 0. In $R = \mathbb{C}^n$, let e_1, \ldots, e_n be the "standard basis vectors" of linear algebra. For each pair of indices *i* and *j*, we have $e_i e_j = 0 \in I$. Hence for each pair (i, j), either e_i or e_j is in *I*. Since $e_1 + \cdots + e_n = 1 \in R$, it is clear that *I* cannot contain all of the e_j (because *I* isn't all of *R*). Let's say specifically

that e_i is not in I. Then, as explained above, all of the e_j with $j \neq i$ are in I. By taking linear combinations of these elements, we see that I contains all (a_1, \ldots, a_n) with $a_i = 0$. But these elements constitute ker π_i ! Hence I contains ker π_i and must be equal to ker π_i because I is proper and the kernel is maximal.