Math 113H

Professor Ken Ribet Answers to First Midterm Exam

February 18, 1991

1. Let G be a cyclic group of order 6^{100} . How many subgroups does G have? (Don't just write down a number; give some explanation.)

A cyclic group G of order N has precisely one subgroup of order d if d divides N and no subgroup of order d if d doesn't divide N. Hence the number of subgroups of G is the number of positive divisors of N. The number of divisors of 6^{100} is 101^2 .

2. Let G be a group of order 11^2 which is not cyclic. How many elements of order 11 are there in G? How many subgroups does G have?

Since G is not cyclic, the order of an element of G can be only 1 or 11. The identity element of G is the unique element of order 1. Hence there are $11^2 - 1 = 120$ elements of order 11. Among the subgroups of G there is (e) and G itself. All other subgroups of G have order 11. A given subgroup of G which has order 11 consists of the identity element and 10 elements of order 11. The number of subgroups of G with order 11 is then 120/10 = 12. The total number of subgroups is 14.

3. Find an integer x such that $x \equiv 23 \mod 69$ and $x \equiv 34 \mod 397$. (Don't bother simplifying your answer if it is complicated.) The identity $4 \cdot 397 = 23 \cdot 69 + 1$ will probably be useful.

Use the method which was discussed in class. This gives $23 \cdot 4 \cdot 397 - 23 \cdot 34 \cdot 69 = -17434$ as an answer. If we prefer a positive answer, we can add $69 \cdot 397$, thereby getting 9959 as another answer. Of course, " $23 \cdot 4 \cdot 397 - 23 \cdot 34 \cdot 69$ " is a perfectly acceptable answer as it stands; there was no need to come up with its numerical value.

4. Here are two relations on the set of rational numbers. Which are equivalence relations? (Explain your answers.)

a. Two rational numbers are related if their sum may be written $\frac{p}{q}$ with p and q integers such that p is even and q is odd.

b. Two rational numbers are related if their difference may be written $\frac{p}{q}$ where p and q are integers such that q is not divisible by 4.

The first one isn't even transitive. For example, 1/2 + 1/2 = 1 cannot be written p/q in the indicated way, so 1/2 is not related to itself. The second appears to be an equivalence relation: one simply checks the axioms. For example, the transitivity would follow if we knew that the sum of two p/q's of the indicated type is again of the indicated type. This is okay because the denominator of the sum of two p/q's is the least common multiple of the two q's. If neither q is divisible by 4, then the least common multiple isn't divisible by 4 either.

5. Let g be an element of a finite group G. Define a map $\phi: \mathbb{Z} \to G$ by $\phi(n) = g^n$ for $n \in \mathbb{Z}$. Show that ϕ is a homomorphism of groups. Prove that the kernel of ϕ consists precisely of the multiples of the order of g.

Showing that ϕ is a homomorphism is completely straightforward. The main point is to know that $g^n = e$ if and only if n is a multiple of o(g). For this, we let t = o(g) and write n = qt + r where $0 \leq r < t$. We have $g^n = g^r$, and g^r is the identity element if and only if r = 0, in view of the definition of t.