Math H113

Wed May 7 22:18:00 2003 : Hi could you opst solutions to 8.2.7, 8.3.6,8.3.7, 9.4.3 ? Thanks

Problem 7 of §8.2: Suppose that R is a Bezout domain. Let a and b be elements of R and let d be a generator of the ideal (a, b). Then d is a greatest common divisor of a and b by Proposition 2 on page 275. Since $d \in (a, b)$, d can be written in the form ax + by. Conversely, suppose that every pair of elements a and b have a greatest common divisor d of the form ax + by. Let a and b be given elements and let d = ax + by be a common divisor. Then d lies in (a, b) because this ideal consists of all ax + by as x and y run through R. Further, a and b each are multiples of d, so they lie in (d). Thus we have $(a, b) \subseteq (d)$ and $(d) \subseteq (a, b)$, so (a, b) = (d) is principal. This gives part (a).

Part (b) is proved by the same argument explained in my solution to Problem 4 of §8.2. (This solution was posted after the previous assignment was handed in.)

For part (c), we have to understand that every element of F can be written a/b with $a, b \in R$ and b non-zero. Let d = ax + by be a greatest common divisor of a and b. Write a = da', b = db' with $a', b' \in R$. Then a/b = a'/b'. Moreover, we have 1 = a'xc + b'y, and it follows from this equation that a' and b' are relatively prime. (Anything that divides a' and b' divides 1 and must therefore be a unit.)

Problem 6 of §8.3: For part (a), we note that *i* is congruent to $-1 \mod (1+i)$, so that $a + bi \equiv a - b \mod (1+i)$. This remark establishes the surjectivity of the natural map $\mathbf{Z} \to \mathbf{Z}[i]/(1+i)$ (given by $a \mapsto a \mod (1+i)$). The kernel of this map contains $(2) = 2\mathbf{Z}$ since 2 = (1+i)(1-i); the kernel does not contain 1 since $1 = \alpha \cdot (1+i)$ would imply the impossible equality of integers $1 = N(1) = N(\alpha)N(1+i) = 2N(\alpha)$. Hence the kernel is precisely $2\mathbf{Z}$ and we get an isomorphism $\mathbf{Z}/2\mathbf{Z} \xrightarrow{\sim} \mathbf{Z}[i]/(1+i)$.

For part (b), to show that $\mathbf{Z}[i]/(q)$ is a field, it suffices to show that q is irreducible, since we know that irreducible elements in PIDs generate maximal ideals. If q is not irreducible, it may be written as a product $\alpha\beta$ where α and β are non-units. We then get $q^2 = N(q) = N(\alpha)N(\beta)$. The numbers $N(\alpha)$ and $N(\beta)$ can't be 1 because the only elements of norm 1 are the units $\pm 1, \pm i$. Hence both norms are forced to be q. As we have seen in class, though, numbers that are 3 mod 4 cannot be written as the sum of two squares in **Z**. Hence there are no elements of $\mathbf{Z}[i]$ of norm q, so there is no factorization $q = \alpha\beta$. Conclusion: q is indeed irreducible. We were asked to establish also that $\mathbf{Z}[i]/(q)$ has q^2 elements. This is obvious because any $a + bi \in \mathbf{Z}[i]$ is congruent mod q to precisely one x + iy with $0 \le x, y \le q - 1$.

For part (c), we recall that p can be written as a sum $a^2 + b^2$ in **Z** and therefore as a product (a + bi)(a - bi) in $\mathbf{Z}[i]$. Let $\pi = a_b i$ and $\bar{\pi} = a - bi$. (The "bar" here is complex conjugation.) These two elements have prime norm, so they're irreducible. (If they factored non-trivially, their norms would factor nontrivially....) The two ideals I = (a + bi) and J = (a - bi) are maximal because they're generated by irreducible elements, so they're co-maximal unless they are equal. If I = J, then a + bi divides a - bi and vice versa, so the two elements are associates (i.e., are equal up to multiplication by units). This is certainly impossible for various reasons: they're not equal up to sign because a and bare both non-zero, and they're not equal up to multiplication by $\pm i$ because a and b have different parity. Hence it's true that $\mathbf{Z}[i]/(p)$ is isomorphic to the product of the two quotient rings $\mathbf{Z}[i]/(\pi)$ and $\mathbf{Z}[i]/(\pi)$. Now $\mathbf{Z}[i]/(p)$ clearly has p^2 elements (just as $\mathbf{Z}[i]/(q)$ had q^2 elements in the previous part), so the two fields $\mathbf{Z}[i]/(\pi)$ and $\mathbf{Z}[i]/(\pi)$ are forced each to have order p. (They're fields because we've divided out by maximal ideals.)

Problem 7 of §8.3: If π is irreducible and n is non-negative, then (π^{n+1}) is an ideal of $\mathbf{Z}[i]$ that is contained in (π^n) . Consider the map (of additive groups) $\mathbf{Z}[i] \to (\pi^n)/(\pi^{n+1})$ that sends α to $\pi^n \alpha$. This is a homomorphism of groups whose kernel is the set of α such that $\alpha \pi^n$ is divisible by π^{n+1} in $\mathbf{Z}[i]$. That set is clearly the set of α that are divisible by π (unique factorization). By one of the numbered isomorphism theorems (the first one, I think), we get an isomorphism $\mathbf{Z}[i]/(\pi) \xrightarrow{\sim} (\pi^n)/(\pi^{n+1})$. This tells us that the index $((\pi^n) : (\pi^{n+1}))$ is equal to the index of (π) in $\mathbf{Z}[i]$.

More generally, the same argument with π^n replaced by an arbitrary non-zero element β of $\mathbf{Z}[i]$ shows that $\mathbf{Z}[i]/(\pi)$ is isomorphic as an additive group to $(\beta)/(\pi\beta)$. Hence the index of $(\beta\pi)$ in (β) agrees with the index of (π) in $\mathbf{Z}[i]$. Hence $(\mathbf{Z}[i] : (\beta\pi)) = (\mathbf{Z}[i] : (\beta))((\beta) : (\beta\pi)) = (\mathbf{Z}[i] : (\beta))(\mathbf{Z}[i] : (\pi))$. It follows by induction that $(\mathbf{Z}[i] : (\alpha)) = \prod_i (\mathbf{Z}[i] : (\pi_i))$ if $\alpha = \pi_1 \pi_2 \cdots \pi_n$ is the product of n irreducible elements of $\mathbf{Z}[i]$. Note that $(\mathbf{Z}[i] : (\alpha))$ is the order of the quotient ring $\mathbf{Z}[i]/(\alpha)$.

To prove that $(\mathbf{Z}[i]:(\alpha))$ has order $N(\alpha)$, we can start by remarking that both

numbers are 1 when α is a unit. If not, α is a product $\pi_1 \pi_2 \cdots \pi_n$, and we are reduced to proving that $(\mathbf{Z}[i]:(\pi)) = N(\pi)$ when π is irreducible.

For this, we first note that π divides $\pi \bar{\pi} = N(\pi)$, which is an integer > 1. (The norm can't be 1 because then π would be one of the units $\pm 1, \pm i$.) Hence, in $\mathbf{Z}[i]$ π divides some integer. Therefore π divides some prime number because it is irreducible. Hence π is one of the irreducible elements that were discussed in the previous problem (#6). In all cases in that problem, we saw that the number of elements in $\mathbf{Z}[i]/(\pi)$ equaled the norm of π , as we sought to show.

Problem 3 of §9.4: Let p(x) be the given polynomial of degree n, and suppose that p(x) factors as a(x)b(x), where a and b are non-constant. For each i between 1 and n, we have a(i)b(i) = -1, so that one of a(i), b(i) is +1 and the other is -1. Hence a(x) + b(x) vanishes at all integers between 1 and n. Since a + b has degree < n, we have a(x) = -b(x), so $p(x) = -a(x)^2$. This is impossible because p(x) could then take only non-positive values, whereas p(x) is visibly positive if x is large and positive.