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Problem 7 of §8.2: Suppose that R is a Bezout domain. Let a and b be
elements of R and let d be a generator of the ideal (a, b). Then d is a greatest
common divisor of a and b by Proposition 2 on page 275. Since d ∈ (a, b), d can
be written in the form ax + by. Conversely, suppose that every pair of elements
a and b have a greatest common divisor d of the form ax + by. Let a and b be
given elements and let d = ax + by be a common divisor. Then d lies in (a, b)
because this ideal consists of all ax + by as x and y run through R. Further, a
and b each are multiples of d, so they lie in (d). Thus we have (a, b) ⊆ (d) and
(d) ⊆ (a, b), so (a, b) = (d) is principal. This gives part (a).

Part (b) is proved by the same argument explained in my solution to Problem 4
of §8.2. (This solution was posted after the previous assignment was handed in.)

For part (c), we have to understand that every element of F can be written a/b
with a, b ∈ R and b non-zero. Let d = ax + by be a greatest common divisor of
a and b. Write a = da′, b = db′ with a′, b′ ∈ R. Then a/b = a′/b′. Moreover, we
have 1 = a′xc+b′y, and it follows from this equation that a′ and b′ are relatively
prime. (Anything that divides a′ and b′ divides 1 and must therefore be a unit.)

Problem 6 of §8.3: For part (a), we note that i is congruent to −1 mod (1+ i),
so that a + bi ≡ a − b mod (1 + i). This remark establishes the surjectivity of
the natural map Z → Z[i]/(1 + i) (given by a 7→ a mod (1 + i)). The kernel
of this map contains (2) = 2Z since 2 = (1 + i)(1 − i); the kernel does not
contain 1 since 1 = α · (1 + i) would imply the impossible equality of integers
1 = N(1) = N(α)N(1 + i) = 2N(α). Hence the kernel is precisely 2Z and we
get an isomorphism Z/2Z ∼→ Z[i]/(1 + i).

For part (b), to show that Z[i]/(q) is a field, it suffices to show that q is irre-
ducible, since we know that irreducible elements in PIDs generate maximal ideals.
If q is not irreducible, it may be written as a product αβ where α and β are
non-units. We then get q2 = N(q) = N(α)N(β). The numbers N(α) and N(β)
can’t be 1 because the only elements of norm 1 are the units ±1,±i. Hence both
norms are forced to be q. As we have seen in class, though, numbers that are



3 mod 4 cannot be written as the sum of two squares in Z. Hence there are no
elements of Z[i] of norm q, so there is no factorization q = αβ. Conclusion: q is
indeed irreducible. We were asked to establish also that Z[i]/(q) has q2 elements.
This is obvious because any a + bi ∈ Z[i] is congruent mod q to precisely one
x + iy with 0 ≤ x, y ≤ q − 1.

For part (c), we recall that p can be written as a sum a2 + b2 in Z and therefore
as a product (a + bi)(a − bi) in Z[i]. Let π = abi and π̄ = a − bi. (The
“bar” here is complex conjugation.) These two elements have prime norm, so
they’re irreducible. (If they factored non-trivially, their norms would factor non-
trivially. . . .) The two ideals I = (a + bi) and J = (a− bi) are maximal because
they’re generated by irreducible elements, so they’re co-maximal unless they are
equal. If I = J , then a + bi divides a − bi and vice versa, so the two elements
are associates (i.e., are equal up to multiplication by units). This is certainly
impossible for various reasons: they’re not equal up to sign because a and b
are both non-zero, and they’re not equal up to multiplication by ±i because a
and b have different parity. Hence it’s true that Z[i]/(p) is isomorphic to the
product of the two quotient rings Z[i]/(π) and Z[i]/(π̄). Now Z[i]/(p) clearly
has p2 elements (just as Z[i]/(q) had q2 elements in the previous part), so the
two fields Z[i]/(π) and Z[i]/(π̄) are forced each to have order p. (They’re fields
because we’ve divided out by maximal ideals.)

Problem 7 of §8.3: If π is irreducible and n is non-negative, then (πn+1) is
an ideal of Z[i] that is contained in (πn). Consider the map (of additive groups)
Z[i] → (πn)/(πn+1) that sends α to πnα. This is a homomorphism of groups
whose kernel is the set of α such that απn is divisible by πn+1 in Z[i]. That set is
clearly the set of α that are divisible by π (unique factorization). By one of the
numbered isomorphism theorems (the first one, I think), we get an isomorphism
Z[i]/(π) ∼→ (πn)/(πn+1). This tells us that the index

(
(πn) : (πn+1)

)
is equal to

the index of (π) in Z[i].

More generally, the same argument with πn replaced by an arbitrary non-zero
element β of Z[i] shows that Z[i]/(π) is isomorphic as an additive group to
(β)/(πβ). Hence the index of (βπ) in (β) agrees with the index of (π) in Z[i].
Hence (Z[i] : (βπ)) = (Z[i] : (β))((β) : (βπ)) = (Z[i] : (β))(Z[i] : (π)). It follows
by induction that (Z[i] : (α)) =

∏
i(Z[i] : (πi)) if α = π1π2 · · ·πn is the product

of n irreducible elements of Z[i]. Note that (Z[i] : (α)) is the order of the quotient
ring Z[i]/(α).

To prove that (Z[i] : (α)) has order N(α), we can start by remarking that both
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numbers are 1 when α is a unit. If not, α is a product π1π2 · · ·πn, and we are
reduced to proving that (Z[i] : (π)) = N(π) when π is irreducible.

For this, we first note that π divides ππ̄ = N(π), which is an integer > 1. (The
norm can’t be 1 because then π would be one of the units ±1,±i.) Hence, in Z[i]
π divides some integer. Therefore π divides some prime number because it is
irreducible. Hence π is one of the irreducible elements that were discussed in the
previous problem (#6). In all cases in that problem, we saw that the number of
elements in Z[i]/(π) equaled the norm of π, as we sought to show.

Problem 3 of §9.4: Let p(x) be the given polynomial of degree n, and suppose
that p(x) factors as a(x)b(x), where a and b are non-constant. For each i between
1 and n, we have a(i)b(i) = −1, so that one of a(i), b(i) is +1 and the other
is −1. Hence a(x) + b(x) vanishes at all integers between 1 and n. Since a + b
has degree < n, we have a(x) = −b(x), so p(x) = −a(x)2. This is impossible
because p(x) could then take only non-positive values, whereas p(x) is visibly
positive if x is large and positive.
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