
Math H113 Spring, 2003

Thu May 1 18:27:53 2003 : can you post solutions to 7.6.2, 8.1.6, and 8.2.4? thanks

Problem 2 of §7.6: I’ll take it as given that R is a commutative ring (Exercise
15 of §1) and that we know about idempotents (Exercise 1 of §7.6). We can try
to do this exercise by induction on the number of elements of R. It might be
informative to know going in that the order of R is a power of 2: This follows
from the observation that 2a = 0 for all a ∈ R, which we can prove by writing
4a = 4a2 = (a + a)2 = a + a. Since 2a = 0 for all a ∈ R, R is naturally a
vector space over the field Z/2Z, so it’s isomorphic to (Z/2Z)n (for some n)
as an additive group. In the induction that we contemplate, we can start with
the case where R has 2 elements, in which case it’s clear that R ≈ Z/2Z as a
ring. Now suppose that R has more than 2 elements, and pick e ∈ R different
from 0, 1. Then e is an idempotent, so R is the product of Re and R(1 − e)
by Exercise #1. Both factors are non-zero; indeed, they contain the non-zero
elements e and 1− e, respectively. Hence each factor has fewer elements than R.
By induction, each factor is isomorphic as a ring to a product of copies of Z/2Z,
so the same statement is true for R.

Problem 6 of §8.1: We are given relatively positive integers a and b and wish to
study the set of integers of the form an + bm with n and m non-negative. We’re
supposed to be able to get all integers greater than ab−a− b and not ab−a− b.
(No information is requested on integers smaller than ab− a− b.) Equivalently,
we can study the set of integers an+ bm with n and m positive; these are gotten
by adding a+ b to the integers an+ bm with n and m non-negative. This second
way of doing things seems promising because translating ab− a− b up by a + b
turns it into the simpler-looking ab. We have to show that ab is not of the form
an + bm (with n and m positive) but that integers bigger than ab are of this
form.

If an + bm = ab, then b divides an, so it divides n because it’s prime to a. Thus
n is a multiple of b. Similarly m is a multiple of a. Since we are requiring n
and m to be positive, an is at least as big as ab, and so is bm. Hence an + bm
is at least 2ab and can’t be ab.

Assume now that d is bigger than ab. Because a and b are relatively prime, there
are integers x and y so that ax + by = 1. Clearly one of ax, by is positive and



the other is negative. Let’s assume that ax is positive and by is negative. After
changing the sign of y, we have 1 = ax − by with x, y > 0. For every integer t,
we have

d = d · 1 = d(ax− by) = dax− tab + tab− dby

= a(dx− tb) + b(ta− dy).

We need the existence of t so that dx− tb and ta− dy are both positive, i.e., so
that dy/a < t < dx/b. The interval (dy

a , dx
b ) has length d(x/b−y/a) = d/ab > 1.

Accordingly, it does contain an integer in its interior. Conclusion: we can find t
and stamp our envelope.

Problem 4 of §8.2: Let a and b be non-zero elements of R and let d be a greatest
common divisor of a and b. Because d is a common divisor, (d) contains (a) and b,
so (d) contains the ideal (a, b). The condition that d may be written ra+sb means
that, conversely, (d) is contained in (a, b). It follows that if I is an ideal of R that
is generated by at most two elements, then I is generated by at most one element.
Using induction, we can deduce from this that if I is generated by n elements
a1, . . . , an, then I is actually principal. For example, suppose that n = 3; let’s
say that I is generated by a, b and c. Then I is the smallest ideal containing
(a, b) and c, so it’s the smallest ideal containing d and c if d is the gcd of a and b.
We can therefore conclude that R is a PID once we know that every ideal of I is
generated by a finite number of elements. (It’s easy to make examples of ideals
in integral domains that are not generated by a finite number of elements, so we
should watch out here. For an explicit example, take the integral domain to be
the ring of polynomials in variables x1, x2, . . . over a field and consider the ideal
generated by all of the variables xi.) The finite generation of ideals follows from
the second condition. Arguing by contradiction, let’s assume that I is an ideal
of R that cannot be generated by a finite set of its elements. Take a non-zero a1

in I. Then (a1) ⊂ I, and the inclusion is strict. Take an a2 in the complement
of (a1) in I. We get (a1) ⊂ (a1, a2) ⊂ I, with strict inclusions. Continuing in this
manner, we get (a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ · · · ⊂ I. Now each of the ideals
(a1, a2, · · · , an) is principal by what we already know; let (a1, a2, · · · , an) = (rn).
Then r2 divides r1, r3 divides r2, and so on. The quotients rn/rn+1 are non-units
because the inclusions are strict. This is in contradiction with (ii), which says
that there’s an N so that rN/rn is a unit for n ≥ N .
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