I have been asked to write up solutions to problems 10 and 16 in §3.2 and problem 7, 9 and 10 in §3.3.

Problem 10 of §3.2: Consider the map α : $G/(H \cap K) \to G/H$ sending $g(H \cap K)$ to qH; this is well defined because $H \cap K$ is a subgroup of H. Similarly, there's a map $\beta: G/(H\cap K) \to G/K$. The map $\alpha \times \beta: G/(H\cap K) \to G/H \times G/K$ is injective because an element of G that is in both H and K is in $H \cap K$. Note that these maps are merely maps of sets because H and K were not assumed to be normal. The target set $G/H \times G/K$ has mn elements, so $G/(H\cap K)$ has at most mn elements. The map α is clearly surjective. The elements of $G/(H \cap K)$ that map to a given element gH of G/H are the cosets gh($H \cap K$) with h running through H. These are in bijection (under the map "multiplication by g ") with the cosets $h(H \cap K)$, i.e., with the elements of the quotient $H/(H \cap K)$. Hence the index $(G : H \cap K)$ may be written $(G : H) \cdot (H : H \cap K)$; this is something that we probably knew before! Hence $(G : H \cap K)$ is divisible by m; analogously, it is divisible by n. Hence it is divisible by the least common multiple of m and n; in particular, it is at least as big as this lcm.

§3.2, problem 16: Take an integer a and suppose first that a is prime to p. If g is the image of a in $(\mathbf{Z}/p\mathbf{Z})^*$, then the order of g divides $p-1$. This follows from the general statement that if g is an element of a finite group G , then the order of g divides the order of G. Indeed, the order of g is the order of the cyclic subgroup $\langle g \rangle$ generated by g, and this order divides the order of G by Lagrange's theorem. In our specific application, the order of g divides $p-1$, so that $g^{p-1}=1$ in $(\mathbf{Z}/p\mathbf{Z})^*$. In terms of congruences, this statement means that we have $a^{p-1} \equiv 1 \mod p$. We get the required congruence $a^p \equiv a \mod p$ by multiplying both sides by a. If a is now not prime to p, then a mod p is 0, and the congruence $a^p \equiv a \mod p$ holds for trivial reasons. This congruence holds then for all integers a.

Problem 7 of §3.3: Consider the homomorphism φ from G to $G/M \times G/N$ that sends $g \in G$ to (gM, gN) . The kernel of this homomorphism is the set of g that are in both M and N; it is $M \cap N$. Thus the image of φ may be identified with $G/(M \cap N)$. We need to show that this image is all of $G/M \times G/N$, i.e., that φ is surjective. A typical element of $G/M \times G/N$ is (xM, yN) for some $x, y \in G$. This is the product $(xM, N) \cdot (M, yN)$. It suffices to show that both factors are in the image. Since $G = MN$, we can write $y = mn$ with $m \in M$, $n \in N$. Then $(M, yN) = (M, mnN) = (M, mN) = (mM, mN) = \varphi(m)$. Similarly we have $G = NM$ because of the normality. Write $x = n'm'$; then $(xM, N) =$ $(n'M, n'N) = \varphi(n').$

 $\#9$ of §3.3: Let's say that the p-part of a positive integer is the highest power of p dividing that integer. The p-part of the order of G is p^a , for instance. Consider the subgroup PN. The p-part of its order is at least p^a (the order of P) but also at most p^a , which is the

p-part of the order of G. Hence the p-part of the order of PN is p^a . Now the order of PN is $\#(P)\#(N)/\#(P \cap N)$. Looking at p-parts, we see that the p-part of the order of $P \cap N$ coincides with the p-part of the order of N, which is p^b (by definition). Since $P \cap N$ is a subgroup of P, its order is actually a power of p. Hence the order of $P \cap N$ is p^b , which is one thing that we were supposed to prove. For the other, look at the isomorphism $P/(P \cap N) \stackrel{\sim}{\rightarrow} P N/N$. The order of PN/N is seen to be p^{a-b} because the orders of P and $P \cap N$ are p^a and p^b , respectively.

§3.3, Problem 10: We are given, for each prime p, that if p divides $|H|$, then $|H|$ is divisible by the p-part of |G|. We have to prove the same statement for $H \cap N$ relative to N and for HN/N relative to G/N . If p does not divide the order of H, then p does not divide the order of $N \cap H$; also, p does not divide the order of $H N/N$, which is a quotient of H. (It is $H/(H \cap N)$.) Assume now that p does divide the order of H. Then the p-part of the order of H coincides with the p-part of the order of G, which we'll call p^a . Let p^b be the p-part of the order of N. As in the previous problem, the p-part of the order of HN is p^a . We again look at the formula giving the order of HN in terms of the orders of N, H and $H \cap N$. We see that the p-parts of the orders of N and $H \cap N$ must be the same. This shows that $H \cap N$ verifies the Hall subgroup condition as a subgroup of N at the prime number p. As above, the groups $H/(H \cap N)$ and HN/N are isomorphic. The p-part of the order of $H N/N$ is thus p^{a-b} . The number p^{a-b} is also the p-part of the order of G/N .