I have been asked to write up solutions to problems 10 and 16 in §3.2 and problem 7, 9 and 10 in §3.3.

Problem 10 of §3.2: Consider the map \(\alpha : G/(H \cap K) \to G/H \) sending \(g(H \cap K) \) to \(gH \); this is well defined because \(H \cap K \) is a subgroup of \(H \). Similarly, there’s a map \(\beta : G/(H \cap K) \to G/K \). The map \(\alpha \times \beta : G/(H \cap K) \to G/H \times G/K \) is injective because an element of \(G \) that is in both \(H \) and \(K \) is in \(H \cap K \). Note that these maps are merely maps of sets because \(H \) and \(K \) were not assumed to be normal. The target set \(G/H \times G/K \) has \(mn \) elements, so \(G/(H \cap K) \) has at most \(mn \) elements. The map \(\alpha \) is clearly surjective. The elements of \(G/(H \cap K) \) that map to a given element \(gH \) of \(G/H \) are the cosets \(gh(H \cap K) \) with \(h \) running through \(H \). These are in bijection (under the map “multiplication by \(g \)” with the cosets \(h(H \cap K) \), i.e., with the elements of the quotient \(H/(H \cap K) \). Hence the index \((G : H \cap K) \) may be written \((G : H) \cdot (H : H \cap K) \); this is something that we probably knew before! Hence \((G : H \cap K) \) is divisible by \(m \); analogously, it is divisible by \(n \). Hence it is divisible by the least common multiple of \(m \) and \(n \); in particular, it is at least as big as this lcm.

§3.2, problem 16: Take an integer \(a \) and suppose first that \(a \) is prime to \(p \). If \(g \) is the image of \(a \) in \((\mathbb{Z}/p\mathbb{Z})^*\), then the order of \(g \) divides \(p - 1 \). This follows from the general statement that if \(g \) is an element of a finite group \(G \), then the order of \(g \) divides the order of \(G \). Indeed, the order of \(g \) is the order of the cyclic subgroup \(\langle g \rangle \) generated by \(g \), and this order divides the order of \(G \) by Lagrange’s theorem. In our specific application, the order of \(g \) divides \(p - 1 \), so that \(g^{p-1} = 1 \) in \((\mathbb{Z}/p\mathbb{Z})^*\). In terms of congruences, this statement means that we have \(a^{p-1} \equiv 1 \mod p \). We get the required congruence \(a^p \equiv a \mod p \) by multiplying both sides by \(a \). If \(a \) is now not prime to \(p \), then \(a \mod p = 0 \), and the congruence \(a^p \equiv a \mod p \) holds for trivial reasons. This congruence holds then for all integers \(a \).

Problem 7 of §3.3: Consider the homomorphism \(\varphi \) from \(G \) to \(G/M \times G/N \) that sends \(g \in G \) to \((gM, gN)\). The kernel of this homomorphism is the set of \(g \) that are in both \(M \) and \(N \); it is \(M \cap N \). Thus the image of \(\varphi \) may be identified with \(G/(M \cap N) \). We need to show that this image is all of \(G/M \times G/N \), i.e., that \(\varphi \) is surjective. A typical element of \(G/M \times G/N \) is \((xM, yN)\) for some \(x, y \in G \). This is the product \((xM,N) \cdot (M,yN)\). It suffices to show that both factors are in the image. Since \(G = MN \), we can write \(y = mn \) with \(m \in M \), \(n \in N \). Then \((M,yN) = (M,mnN) = (M,mN) = (mM,mN) = \varphi(m)\). Similarly we have \(G = NM \) because of the normality. Write \(x = n'm' \); then \((xM,N) = (n'M,n'N) = \varphi(n')\).

#9 of §3.3: Let’s say that the \(p \)-part of a positive integer is the highest power of \(p \) dividing that integer. The \(p \)-part of the order of \(G \) is \(p^a \), for instance. Consider the subgroup \(PN \). The \(p \)-part of its order is at least \(p^a \) (the order of \(P \)) but also at most \(p^a \), which is the
p-part of the order of G. Hence the p-part of the order of PN is p^a. Now the order of PN is $\#(P)\#(N)/\#(P \cap N)$. Looking at p-parts, we see that the p-part of the order of $P \cap N$ coincides with the p-part of the order of N, which is p^b (by definition). Since $P \cap N$ is a subgroup of P, its order is actually a power of p. Hence the order of $P \cap N$ is p^b, which is one thing that we were supposed to prove. For the other, look at the isomorphism $P/(P \cap N) \sim PN/N$. The order of PN/N is seen to be p^{a-b} because the orders of P and $P \cap N$ are p^a and p^b, respectively.

§3.3, Problem 10: We are given, for each prime p, that if p divides $|H|$, then $|H|$ is divisible by the p-part of $|G|$. We have to prove the same statement for $H \cap N$ relative to N and for HN/N relative to G/N. If p does not divide the order of H, then p does not divide the order of $N \cap H$; also, p does not divide the order of HN/N, which is a quotient of H. (It is $H/(H \cap N)$.) Assume now that p does divide the order of H. Then the p-part of the order of H coincides with the p-part of the order of G, which we’ll call p^a. Let p^b be the p-part of the order of N. As in the previous problem, the p-part of the order of HN is p^a. We again look at the formula giving the order of HN in terms of the orders of N, H and $H \cap N$. We see that the p-parts of the orders of N and $H \cap N$ must be the same. This shows that $H \cap N$ verifies the Hall subgroup condition as a subgroup of N at the prime number p. As above, the groups $H/(H \cap N)$ and HN/N are isomorphic. The p-part of the order of HN/N is thus p^{a-b}. The number p^{a-b} is also the p-part of the order of G/N.

2