Math H113

Can you please post solutions to problem 7 part d of 4.1 and also to problems 11 and 12 of 4.2?

Problem 7d of §4.1: Suppose for each $a \in A$ that G_a is a maximal subgroup. Let B be a block. Since B is non-empty, there is an element a of B. We are told to use part (a), so let's do that: we find that G_B contains G_a , so $G_B = G$ or $G_B = G_a$. If $G_B = G$, then $\sigma(B) = B$ for all $\sigma \in G$. Since the various $\sigma(B)$ cover G (part (b)), we have B = G. If $G_B = G_a$, we want to prove that $B = \{a\}$. Take $b \in B$. Because G is transitive, there is a $\sigma \in G$ with $\sigma(a) = b$. The intersection $\sigma(B) \cap B$ is non-empty: it contains b. Hence $\sigma(B) = B$ by the definition of "block." It follows that σ lies in $G_B = G_a$, so that σ fixes a. Thus b = a; this gives that $B = \{a\}$, since b was an arbitrary element of B.

Suppose now that G is a transitive group acting on A for which one of the G_a is nonmaximal. Think of A as the orbit of a (OK because of transitivity) and write O(a) as G/G_a . Then $A = G/G_a$. Take a subgroup H of G that's strictly between G_a and G; this exists by hypothesis. Consider the subset $B = H/G_a$ of $A = G/G_a$. This subset has more than one element and doesn't fill out all of A; thus it's a non-trivial block if it's a block. To show it's a block we have to show that g(B) = B whenever g(B) and B have an element in common. Well, B and g(B) correspond to subsets of G/G_a ; B is the set of all hG_a with $h \in H$ and g(B) is the set of all ghG_a with $h \in H$. Suppose that these subsets have an element in common; then there are $h, h' \in H$ such that $hG_a = gh'G_a$. This gives $h^{-1}gh' \in G_a$. Now if $x = h^{-1}gh'$, then x is in G_a , which is contained in H, so $x \in H$. It follows that g lies in H, so g(B) = B.

§4.2, problem 11: When we compute the cycle structure of a permutation $\sigma \in S_n$, we are figuring out the different orbits of elements in $\{1, 2, \ldots, n\}$ under the cyclic group generated by σ . Two letters in $\{1, 2, \ldots, n\}$ belong to the same cycle if and only if you can get from one to the other by some power of σ . In this exercise, S_n is replaced by the permutation group on the set underlying the group G and we are taking σ to be the permutation induced by multiplication by x. The orbits that we are talking about are of the form $t, xt, x^2t, \ldots, x^{n-1}t$ where t is an element of G; here n is the order of x (as in the statement of the problem). The cycle decomposition of $\sigma = \pi(x)$ thus consists of a bunch of cycles of length n. The number of cycles is determined by the fact that G is covered completely by disjoint orbits: if |G| = nm, there are m different cycles. The sign of $\pi(x)$ is then ϵ^m , where ϵ is the sign of a cycle of length n. We know that cycles of length n have sign $(-1)^{n-1}$, so the sign of $\pi(x)$ is $((-1)^{n-1})^m$. This sign is -1 precisely when n is even and m is odd.

§4.2, problem 12: If $\pi(G)$ contains an odd permutation, then the homomorphism sgn $\circ \pi$: $G \to \{\pm 1\}$ is surjective. (I write "sgn" for the sign of a permutation.) The kernel of this homomorphism has index 2 in G.